transactivation domains
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 23)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Farag E.S. Mosa ◽  
Ayman O.S. El-Kadi ◽  
Khaled Barakat

Aryl hydrocarbon receptor (AhR) is a biological sensor that integrates environmental, metabolic, and endogenous signals to control complex cellular responses in physiological and pathophysiological functions. The full-length AhR encompasses various domains, including a bHLH, a PAS A, a PAS B, and transactivation domains. With the exception of the PAS B and transactivation domains, the available 3D structures of AhR revealed structural details of its subdomains interactions as well as its interaction with other protein partners. Towards screening for novel AhR modulators homology modeling was employed to develop AhR-PAS B domain models. These models were validated using molecular dynamics simulations and binding site identification methods. Furthermore, docking of well-known AhR ligands assisted in confirming these binding pockets and discovering critical residues to host these ligands. In this context, virtual screening utilizing both ligand-based and structure-based methods screened large databases of small molecules to identify novel AhR agonists or antagonists and suggest hits from these screens for validation in an experimental biological test. Recently, machine-learning algorithms are being explored as a tool to enhance the screening process of AhR modulators and to minimize the errors associated with structure-based methods. This chapter reviews all in silico screening that were focused on identifying AhR modulators and discusses future perspectives towards this goal.


2021 ◽  
Author(s):  
Nader Alerasool ◽  
Zhen-Yuan Lin ◽  
Anne-Claude Gingras ◽  
Mikko Taipale

Transcription is orchestrated by thousands of transcription factors and chromatin-associated proteins, but how these are causally connected to transcriptional activation or repression is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. We also identify potent transactivation domains among the hits. By combining interaction proteomics and chemical inhibitors, we delineate the preference of both known and novel transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct co-factors. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent activator. SRF-C3orf62 activates transcription in a CBP/p300-dependent manner and promotes proliferative and myogenic transcriptional programs. Our work provides a functional catalogue of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.


Blood ◽  
2021 ◽  
Author(s):  
Franziska Taube ◽  
Julia Annabell Georgi ◽  
Michael Kramer ◽  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
...  

Biallelic mutations of the CEBPA gene (CEBPAbi) define a distinct entity associated with favorable prognosis, however the role of monoallelic mutations (CEBPAsm) is poorly understood. We retrospectively analyzed 4708 adult AML patients recruited into Study Alliance Leukemia trials to investigate the prognostic impact of CEBPAsm. CEBPA mutations were identified in 240 patients (5.1%), 131 CEBPAbi and 109 CEBPAsm (60 affecting the amino-terminal transactivation domains (CEBPAsmTAD) and 49 the carboxy-terminal DNA-binding or basic leucine zipper region (CEBPAsmbZIP)). Interestingly, CEBPAbi and CEBPAsmbZIP patients shared several clinical factors, i.e. were significantly younger (median 46 years and 50 years) and had higher WBC counts at diagnosis (median 23.7 and 35.7 109/l) compared to CEBPAsmTAD patients (median age 63 yrs., median WBC 13.1 109/l; p<.001). Co-mutations were also similar in both groups, e.g. GATA2 mutations (35.1% CEBPAbi; 36.7% CEBPAsmbZIP vs. 6.7% CEBPAsmTAD; p<.001) or NPM1 mutations (3.1% CEBPAbi; 8.2% CEBPAsmbZIP vs. 38.3% CEBPAsmTAD; p<.001). CEBPAbi and CEBPAsmbZIP, but not CEBPAsmTAD were associated with significantly improved overall (median OS: 103 and 63 vs. 13 months) and event-free survival (median EFS: 20.7 and 17.1 vs. 5.7 months), in univariate and multivariable analyses. More detailed analysis revealed that the clinical and molecular features as well as the favorable survival were confined to patients showing in-frame mutations in bZIP (CEBPAbZIP-inf). When grouping patients into CEBPAbZIP-inf and CEBPAother (including CEBPAsmTAD and other non-CEBPAbZIP-inf patients), only CEBPAbZIP-inf patients showed superior CR rates and the longest median OS and EFS, arguing for a previously undefined prognostic role of this type of mutations.


2021 ◽  
Author(s):  
Yukitomo Arao ◽  
Kenneth S. Korach

Abstract Estrogen receptor (ER) is a member of the nuclear receptor superfamily whose members share conserved domain structures, including a DNA-binding domain (DBD) and ligand-binding domain (LBD). Estrogenic chemicals work as ligands for activation or repression of ER-mediated transcriptional activity derived from two transactivation domains: AF-1 and AF-2. AF-2 is localized in the LBD, and helix 12 of the LBD is essential for controlling AF-2 functionality. The positioning of helix 12 defines the ER alpha (ERα) ligand properties as agonists or antagonists. In contrast, it is still less well defined as to the ligand-dependent regulation of N-terminal AF-1 activity. It has been thought that the action of selective estrogen receptor modulators (SERMs) is mediated by the regulation of a tissue specific AF-1 activity rather than AF-2 activity. However, it is still unclear how SERMs regulate AF-1 activity in a tissue-selective manner. This review presents some recent observations toward information of ERα mediated SERM actions related to the ERα domain functionality, focusing on the following topics. (1) The F-domain, which is connected to helix 12, controls 4-hydroxytamoxifen (4OHT) mediated AF-1 activation associated with the receptor dimerization activity. (2) The zinc-finger property of the DBD for genomic sequence recognition. (3) The novel estrogen responsive genomic DNA element, which contains multiple long-spaced direct-repeats without a palindromic ERE sequence, is differentially recognized by 4OHT and E2 ligand bound ERα transactivation complexes.


2021 ◽  
Author(s):  
HUAN CHEN ◽  
Min Li ◽  
Guang Qi ◽  
Ming Zhao ◽  
Longyu Liu ◽  
...  

The phytohormone salicylic acid (SA) plays a pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Genetic studies have identified NPR1 and EDS1 as two central hubs in plant local and systemic immunity. However, it is unclear how NPR1 orchestrates gene regulation and whether EDS1 directly participates in transcriptional reprogramming. Here we show that NPR1 and EDS1 synergistically activate Pathogenesis-Related (PR) genes and plant defenses by forming a protein complex and co-opting with Mediator. In particular, we discover that EDS1 functions as an autonomous transcriptional coactivator with intrinsic transactivation domains and physically interacts with the CDK8 subunit of Mediator. Upon SA induction, EDS1 is directly recruited by NPR1 onto the PR1 promoter via physical NPR1-EDS1 interactions, thereby potentiating PR1 activation. We further demonstrate that EDS1 stabilizes NPR1 protein and NPR1 transcriptionally upregulates EDS1 in plant-pathogen interactions. Our results reveal an elegant interplay of key coactivators with Mediator and elucidate novel molecular mechanisms for activating transcription during immune responses.


2020 ◽  
pp. 247255522097959
Author(s):  
Chloe A. N. Gerak ◽  
Si Miao Zhang ◽  
Aruna D. Balgi ◽  
Ivan J. Sadowski ◽  
Richard B. Sessions ◽  
...  

ETV6 is an ETS family transcriptional repressor for which head-to-tail polymerization of its PNT domain facilitates cooperative binding to DNA by its ETS domain. Chromosomal translocations frequently fuse the ETV6 PNT domain to one of several protein tyrosine kinases. The resulting chimeric oncoproteins undergo ligand-independent self-association, autophosphorylation, and aberrant stimulation of downstream signaling pathways, leading to a variety of cancers. Currently, no small-molecule inhibitors of ETV6 PNT domain polymerization are known and no assays targeting PNT domain polymerization have been described. In this study, we developed complementary experimental and computational approaches for identifying such inhibitory compounds. One mammalian cellular approach utilized a mutant PNT domain heterodimer system covalently attached to split Gaussia luciferase fragments. In this protein–fragment complementation assay, inhibition of PNT domain heterodimerization reduces luminescence. A yeast assay took advantage of activation of the reporter HIS3 gene upon heterodimerization of mutant PNT domains fused to DNA-binding and transactivation domains. In this two-hybrid screen, inhibition of PNT domain heterodimerization prevents cell growth in medium lacking histidine. The Bristol University Docking Engine (BUDE) was used to identify virtual ligands from the ZINC8 library predicted to bind the PNT domain polymerization interfaces. More than 75 hits from these three assays were tested by nuclear magnetic resonance spectroscopy for binding to the purified ETV6 PNT domain. Although none were found to bind, the lessons learned from this study may facilitate future approaches for developing therapeutics that act against ETV6 oncoproteins by disrupting PNT domain polymerization.


2020 ◽  
Vol 21 (24) ◽  
pp. 9401
Author(s):  
Antonio Bouthelier ◽  
Florinda Meléndez-Rodríguez ◽  
Andrés A. Urrutia ◽  
Julián Aragonés

Cellular response to hypoxia is controlled by the hypoxia-inducible transcription factors HIF1α and HIF2α. Some genes are preferentially induced by HIF1α or HIF2α, as has been explored in some cell models and for particular sets of genes. Here we have extended this analysis to other HIF-dependent genes using in vitro WT8 renal carcinoma cells and in vivo conditional Vhl-deficient mice models. Moreover, we generated chimeric HIF1/2 transcription factors to study the contribution of the HIF1α and HIF2α DNA binding/heterodimerization and transactivation domains to HIF target specificity. We show that the induction of HIF1α-dependent genes in WT8 cells, such as CAIX (CAR9) and BNIP3, requires both halves of HIF, whereas the HIF2α transactivation domain is more relevant for the induction of HIF2 target genes like the amino acid carrier SLC7A5. The HIF selectivity for some genes in WT8 cells is conserved in Vhl-deficient lung and liver tissue, whereas other genes like Glut1 (Slc2a1) behave distinctly in these tissues. Therefore the relative contribution of the DNA binding/heterodimerization and transactivation domains for HIF target selectivity can be different when comparing HIF1α or HIF2α isoforms, and that HIF target gene specificity is conserved in human and mouse cells for some of the genes analyzed.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3422
Author(s):  
Sebastien M. Joruiz ◽  
Jessica A. Beck ◽  
Izumi Horikawa ◽  
Curtis C. Harris

The TP53 gene is a critical tumor suppressor and key determinant of cell fate which regulates numerous cellular functions including DNA repair, cell cycle arrest, cellular senescence, apoptosis, autophagy and metabolism. In the last 15 years, the p53 pathway has grown in complexity through the discovery that TP53 differentially expresses twelve p53 protein isoforms in human cells with both overlapping and unique biologic activities. Here, we summarize the current knowledge on the Δ133p53 isoforms (Δ133p53α, Δ133p53β and Δ133p53γ), which are evolutionary derived and found only in human and higher order primates. All three isoforms lack both of the transactivation domains and the beginning of the DNA-binding domain. Despite the absence of these canonical domains, the Δ133p53 isoforms maintain critical functions in cancer, physiological and premature aging, neurodegenerative diseases, immunity and inflammation, and tissue repair. The ability of the Δ133p53 isoforms to modulate the p53 pathway functions underscores the need to include these p53 isoforms in our understanding of how the p53 pathway contributes to multiple physiological and pathological mechanisms. Critically, further characterization of p53 isoforms may identify novel regulatory modes of p53 pathway functions that contribute to disease progression and facilitate the development of new therapeutic strategies.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Klára Kirsch ◽  
András Zeke ◽  
Orsolya Tőke ◽  
Péter Sok ◽  
Ashish Sethi ◽  
...  

AbstractTranscription factor phosphorylation at specific sites often activates gene expression, but how environmental cues quantitatively control transcription is not well-understood. Activating protein 1 transcription factors are phosphorylated by mitogen-activated protein kinases (MAPK) in their transactivation domains (TAD) at so-called phosphoswitches, which are a hallmark in response to growth factors, cytokines or stress. We show that the ATF2 TAD is controlled by functionally distinct signaling pathways (JNK and p38) through structurally different MAPK binding sites. Moreover, JNK mediated phosphorylation at an evolutionarily more recent site diminishes p38 binding and made the phosphoswitch differently sensitive to JNK and p38 in vertebrates. Structures of MAPK-TAD complexes and mechanistic modeling of ATF2 TAD phosphorylation in cells suggest that kinase binding motifs and phosphorylation sites line up to maximize MAPK based co-regulation. This study shows how the activity of an ancient transcription controlling phosphoswitch became dependent on the relative flux of upstream signals.


Sign in / Sign up

Export Citation Format

Share Document