scholarly journals Inhibition of glycogen synthase kinase-3β is involved in cardioprotection by α7nAChR agonist and limb remote ischemic postconditionings

2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Hui-Xian Li ◽  
Xin-Long Cui ◽  
Fu-Shan Xue ◽  
Gui-Zhen Yang ◽  
Ya-Yang Liu ◽  
...  

The present study was designed to determine whether glycogen synthase kinase-3β (GSK-3β) was involved in the cardioprotection by α7 nicotinic acetylcholine receptor (α7nAChR) agonist and limb remote ischemic postconditionings. Forty male Sprague-Dawley rats were randomly divided equally into control (C), α7nAChR agonist postconditioning (P), limb remote ischemic postconditioning (L), combined α7nAChR agonist and limb remote ischemic postconditioning (P+L) groups. At the end of experiment, serum cTnI, creatine kinase-MB (CK-MB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), high mobility group protein (HMGB1) and interleukin-10 (IL-10) levels were measured; infarct size (IS), myocardial expressions of GSK-3β, p-GSK-3β (Ser9), nuclear factor-κB (NF-κB) and p-NF-κB (Ser536) in the ischemic area were assessed. The results showed that compared with group C, IS, serum cTnI and CK-MB levels obviously decreased in groups P, L and P+L. Compared with groups P and L, IS, serum cTnI and CK-MB levels significantly decreased in group P+L. Compared with group C, serum TNF-α, IL-6 and HMGB1 levels, and myocardial expression of p-NF-κBp65 (Ser536) evidently decreased, and myocardial expression of p-GSK-3β (Ser9) obviously increased in groups P, L and P+L. Compared with group P, serum TNF-α, IL-6 and HMGB1 levels and myocardial expression of p-NF-κBp65 (Ser536) significantly increased, and myocardial expression of p-GSK-3β (Ser9) evidently decreased in group L. Compared with group L, serum TNF-α, IL-6, HMGB1 levels, and myocardial expression of p-NF-κBp65 (Ser536) significantly decreased, and myocardial expression of p-GSK-3β (Ser9) obviously increased in group P+L. In conclusion, our findings indicate that inhibition of GSK-3β to decrease NF-κB transcription is one of cardioprotective mechanisms of α7nAChR agonist and limb remote ischemic postconditionings by anti-inflammation, but improved cardioprotection by combined two interventions is not completely attributable to an enhanced anti-inflammatory mechanism.

2009 ◽  
Vol 77 (9) ◽  
pp. 4002-4008 ◽  
Author(s):  
Yi-Lin Cheng ◽  
Chi-Yun Wang ◽  
Wei-Ching Huang ◽  
Cheng-Chieh Tsai ◽  
Chia-Ling Chen ◽  
...  

ABSTRACT A proinflammatory role for glycogen synthase kinase 3β (GSK-3β) has been demonstrated. Here, we addressed its roles on heat-inactivated Staphylococcus aureus-induced microglial inflammation. Heat-inactivated S. aureus induced tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, at least in part, via a Toll-like receptor 2-regulated pathway. Neutralization of TNF-α largely blocked heat-inactivated S. aureus-induced NO. Heat-inactivated S. aureus activated GSK-3β, and inhibiting GSK-3β reduced TNF-α production as well as inducible NO synthase (iNOS)/NO biosynthesis. While activation of NF-κB was essential for heat-inactivated S. aureus-induced TNF-α and NO, inhibiting GSK-3β blocked heat-inactivated S. aureus-induced NF-κB p65 nuclear translocation. Additionally, inhibiting GSK-3β enhanced heat-inactivated S. aureus-induced interleukin-10 (IL-10) production (IL-10 is an anti-inflammatory cytokine which inhibits TNF-α production). Neutralization of IL-10 reduced TNF-α downregulation caused by GSK-3β inhibition. These results suggest that GSK-3β regulates heat-inactivated S. aureus-induced TNF-α and NO production in microglia mainly by activating NF-κB and probably by inhibiting IL-10.


2018 ◽  
Vol 62 (6) ◽  
pp. e02045-17 ◽  
Author(s):  
Chia-Ling Chen ◽  
Miao-Huei Cheng ◽  
Chih-Feng Kuo ◽  
Yi-Lin Cheng ◽  
Ming-Han Li ◽  
...  

ABSTRACTGroup AStreptococcus(GAS) is an important human pathogen that causes a wide spectrum of diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), an antitussive drug, has been demonstrated to efficiently reduce inflammatory responses, thereby contributing to an increased survival rate of GAS-infected mice. However, the anti-inflammatory mechanisms underlying DM treatment in GAS infection remain unclear. DM is known to exert neuroprotective effects through an NADPH oxidase-dependent regulated process. In the present study, membrane translocation of NADPH oxidase subunit p47phoxand subsequent reactive oxygen species (ROS) generation induced by GAS infection were significantly inhibited via DM treatment in RAW264.7 murine macrophage cells. Further determination of proinflammatory mediators revealed that DM effectively suppressed inducible nitric oxide synthase (iNOS) expression and NO, tumor necrosis factor alpha, and interleukin-6 generation in GAS-infected RAW264.7 cells as well as in air-pouch-infiltrating cells from GAS/DM-treated mice. GAS infection caused AKT dephosphorylation, glycogen synthase kinase-3β (GSK-3β) activation, and subsequent NF-κB nuclear translocation, which were also markedly inhibited by treatment with DM and an NADPH oxidase inhibitor, diphenylene iodonium. These results suggest that DM attenuates GAS infection-induced overactive inflammation by inhibiting NADPH oxidase-mediated ROS production that leads to downregulation of the GSK-3β/NF-κB/NO signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jingjin Li ◽  
Chonglong Shi ◽  
Zhengnian Ding ◽  
Wenjie Jin

Postoperative cognitive dysfunction (POCD) is a common postoperative central nervous system complication, especially in the elderly. It has been consistently reported that the pathological process of this clinical syndrome is related to neuroinflammation and microglial proliferation. Glycogen synthase kinase 3β (GSK-3β) is a widely expressed kinase with distinct functions in different types of cells. The role of GSK-3β in regulating innate immune activation has been well documented, but as far as we know, its role in POCD has not been fully elucidated. Lithium chloride (LiCl) is a widely used inhibitor of GSK-3β, and it is also the main drug for the treatment of bipolar disorder. Prophylactic administration of lithium chloride (2 mM/kg) can inhibit the expression of proinflammatory mediators in the hippocampus, reduce the hippocampal expression of NF-κB, and increase both the downregulation of M1 microglial-related genes (inducible nitric oxide synthase and CD86) and upregulation of M2 microglial-related genes (IL-10 and CD206), to alleviate the cognitive impairment caused by orthopedic surgery. In vitro, LiCl reversed LPS-induced production of proinflammatory mediators and M1 polarization of microglia. To sum up these results, GSK-3β is a key contributor to POCD and a potential target of neuroprotective strategies.


Pharmacologia ◽  
2014 ◽  
Vol 5 (6) ◽  
pp. 205-214 ◽  
Author(s):  
J. Cantizani ◽  
J. Ortiz ◽  
A. S. Ravipati ◽  
Lorena Rodriguez ◽  
B. Cautain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document