scholarly journals Botulinum toxin type A interrupts autophagic flux of submandibular gland

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Shang Xie ◽  
Hui Xu ◽  
Xiao-Feng Shan ◽  
Zhi-Gang Cai

Abstract Botulinum toxin type A (BTXA) is a neurotoxic protein produced by Clostridium botulinum. Our previous studies demonstrated that BTXA inhibits the secretory function of submandibular gland (SMG) and changes its structure. Several studies reported that SMG damage and repair often occur with autophagy in the rat. However, no studies reported whether secretory inhibition and structural changes of SMG after BTXA injection is related with autophagy. The present study was carried out to explore the association between BTXA injection and autophagy in rat SMG. Western blotting and immunofluorescence were used to detect the expression and distribution of light chain 3 (LC3) in rat SMG. MTS was used to detect the toxicity of BTXA on rat SMG-C6 cell line. GFP-LC3 and Lyso-Tracker Red fluorescence probe were used to assess the levels of autophagosomes and lysosome fusion and the effect of BTXA on autophagic flux in SMG-C6. Western blotting and immunofluorescence results showed that BTXA temporarily increased autophagosomes in rat SMG. MTS results showed that BTXA exerted its toxicity on SMG-C6 in a dose-dependent manner. BTXA increased the number of autophagosomes in SMG-C6; however, most autophagosomes did not colocalize with lysosome. Therefore, we presume that BTXA can change autophagic flux of SMG cells, the mechanism of which might relate with BTXA’s disturbing autophagosome-lysosome fusion.

2021 ◽  
Author(s):  
Huilian Bu ◽  
Huilian Bu ◽  
Pengfei Jiao ◽  
Pengfei Jiao ◽  
Xiaochong Fan ◽  
...  

Abstract Botulinum toxin type A (BTX-A) was widely used to treat neuropathic pain in clinic. The underlying analgesic mechanism of BTX-A involves in axonal transport. The chemokine (C-X-C motif) ligand 13 (CXCL13) and GABA transporter 1 (GAT-1) played important roles in chronic pain. We established a chronic constriction injury (CCI) model. The pain behaviors of rats were measured by testing paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs). The level of proteins was measured by western blots. In our results, the CCI rats showed decrease of PWTs and PWLs, which were relieved by BTX-A. BTX-A reversed the over-expression of CXCL13 and GAT-1 in spinal cord, DRG, sciatic nerve and plantar in CCI rats and characterized in dose-dependent manner. The inhibition of BTX-A on proteins we examined didn’t show significant trend among time points. The analgesic effect of BTX-A disappeared after the axon transport of sciatic nerve blocked by the colchicine. But the PWTs of the colchicine treated CCI rats were higher than non- colchicine-treated CCI rats. Colchicine decreased the levels of CXCL13 and GAT-1 in CCI rats. What’s more, the proteins we examined peaked at the sciatic nerve in the non-colchicine group, but the phenomenon disappeared in the colchicine group. In conclusion, the BTX-A and colchicine relieve neuropathic pain and suppress the increase of CXCL13 and GAT-1. Colchicine prevents the analgesic effect of BTX-A by blocking axon transport. The axon transport may play roles in the peripheral mechanisms of neuropathic pain.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Shang Xie ◽  
Hui Xu ◽  
Bo Lin ◽  
Kan Wang ◽  
Xiao-Feng Shan ◽  
...  

Objectives. To investigate whether botulinum toxin type A (BTXA) could control excessive secretion after submandibular gland (SMG) transplantation in rabbits and its possible mechanisms.Methods. A new SMG transplantation model was established in rabbit. 30 successfully constructed models were randomly assigned to five groups including control group and four experimental groups. Secretion outputs were used to analyze the effect of BTXA injection on excessive secretion. Hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), Western blot, and immunofluorescence were performed to analyze its possible mechanisms.Results. After BTXA injection, a significant decrease of excessive secretion after SMG transplantation was found in 2 and 4 weeks groups, but no significant effect on 12 and 24 weeks groups. HE and TEM results showed that BTXA led to morphological and ultrastructural changes of acinar cells of transplanted SMG. Western blot results suggested that BTXA decreased the aquaporin-5 (AQP5) protein expression after BTXA injection for 2 and 4 weeks. Immunofluorescence results showed that AQP5 protein was mainly expressed in the cytoplasm after BTXA injection for 2 and 4 weeks, which might indicate that BTXA promoted AQP5 expression from the cell membrane to cytoplasm.Conclusion. BTXA could effectively control excessive secretion after SMG transplantation in rabbits.


2005 ◽  
Vol 18 (1) ◽  
pp. 29
Author(s):  
Dong Eon Moon ◽  
Young Eun Moon ◽  
Shi Hyeon Kim ◽  
Eun Sung Kim

Sign in / Sign up

Export Citation Format

Share Document