Cellular mechanisms regulating non-haemostatic plasmin generation

2002 ◽  
Vol 30 (2) ◽  
pp. 189-194 ◽  
Author(s):  
R. Bass ◽  
V. Ellis

A variety of proteases have the potential to degrade the extracellular matrix (ECM), thereby influencing the behaviour of cells by removing physical barriers to cell migration, altering cell-ECM interactions or releasing ECM-associated growth factors. The plasminogen activation system of serine proteases is particularly implicated in this pericellular proteolysis and is involved in pathologies ranging from cancer invasion and metastasis to fibroproliferative vascular disorders and neurodegeneration. A central mechanism for regulating plasmin generation is through the binding of the two plasminogen activators to specific cellular receptors: urokinase-type plasminogen activator to the glycolipid-anchored membrane protein uPAR, and tissue plasminogen activator to a type-II transmembrane protein recently identified on vascular smooth muscle cells. These binary complexes interact with membrane-associated plasminogen to form higher order activation complexes that greatly reduce the Km for plasminogen activation and, in some cases, protect the proteases from their cognate serpin inhibitors. Various other proteins that are involved in cell adhesion and migration also interact with these complexes, modulating the activity of this efficient and spatially restricted proteolytic system. Recent observations demonstrate that certain forms of the prion protein can stimulate tissue plasminogen activator-catalysed plasminogen activation, which raises the possibility that these proteases may also have a role in the pathogenesis of the transmissible spongiform encephalopathies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James J. Miller ◽  
Richard N. Bohnsack ◽  
Linda J. Olson ◽  
Mayumi Ishihara ◽  
Kazuhiro Aoki ◽  
...  

AbstractPlasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.


2005 ◽  
Vol 20 (2) ◽  
pp. 519-527 ◽  
Author(s):  
K. Xanthopoulos ◽  
I. Paspaltsis ◽  
V. Apostolidou ◽  
S. Petrakis ◽  
C.J. Siao ◽  
...  

1985 ◽  
Vol 40 (6) ◽  
pp. 853-861 ◽  
Author(s):  
K. Deguchi ◽  
S. Murashima ◽  
S. Shirakawa ◽  
C. Soria ◽  
J. Soria ◽  
...  

2009 ◽  
Vol 60 (2) ◽  
pp. 559-568 ◽  
Author(s):  
Chunya Bu ◽  
Lei Gao ◽  
Weidong Xie ◽  
Jainwei Zhang ◽  
Yuhong He ◽  
...  

2017 ◽  
Vol 293 (1) ◽  
pp. 203-214 ◽  
Author(s):  
Daniela Lau ◽  
Dzemal Elezagic ◽  
Gabriele Hermes ◽  
Matthias Mörgelin ◽  
Alexander P. Wohl ◽  
...  

Author(s):  
M Hoylaerts ◽  
D C Rijken ◽  
H R Lijnen ◽  
D Collen

The activation of human plasminogen (P) by two-chain tissue plasminogen activator (A) was studied in the presence of fibrin films (F) of increasing size and surface density. Initial rates of plasminogen activation (v) were determined as a function both of the plasminogen and fibrin concentration. The activation rate was strongly dependent on the presence of fibrin and plots of 1/v versus 1/ [p] or 1 /[F] yielded straight lines. The kinetic data were in agreement with the following reaction scheme.According to this model tissue plasminogen activator would bind to fibrin with a dissociation constant (KF of 0.2 µM and this complex fixes plasminogen with a Michaelis constant (Kp’) of 0.15 µM (Glu-plasminogen) or 0.02 µM (Lys-plasminogen) to form a ternary complex, converted to plasmin with a catalytic rate constant kcat = 0.05 s-1. This mechanism implies that both plasminogen and tissue plasminogen activator are concentrated on the fibrin surface through formation of a fibrin bridge. Activation of plasminogen in the absence of fibrin occurs with Km = 65 µM (Glu-plasminogen) or Km= 19 µM (Lys-plasminogen) and kcat = 0.05 s-1. Our data suggest that fibrin enhances the activation rate of plasminogen by tissue plasminogen activator by increasing the affinity of plasminogen for fibrin-bound tissue plasminogen activator and not by influencing the catalytic efficiency of the enzµMe. These data also support the hypothesis that fibrinolysis is both triggered by and directed towards fibrin.Generated plasmin was quantitated by measuring the rate of solubilization of 125I-labeled fibrin.


Sign in / Sign up

Export Citation Format

Share Document