human plasminogen
Recently Published Documents


TOTAL DOCUMENTS

600
(FIVE YEARS 33)

H-INDEX

56
(FIVE YEARS 2)

2021 ◽  
Vol 12 (4) ◽  
pp. 908-911
Author(s):  
Panneerselvam N R ◽  
Anbarasan B ◽  
Subathra T

Background: Thromboembolic disorders are one of the important causes leading to death. In the Siddha system of medicine, many drugs have been mentioned in the literature and their thrombolytic potential needs to be scientifically evaluated. Aim: The study aims to perform the In Silico computational studies of Phytoconstituents of Siddha formulation Sikkanjar Manapagu (SM) to evaluate its thrombolytic potential. Methods: Autodock program was used for the molecular docking studies of the retrieved phytoconstituents such as Zingiberene, Gingerenone-A, 6 Gingerol of Zingiber officinale, Menthol, Luteolin, Citronellol of Mentha arvensis, Eugenol, Limonene, Myrcene, and Linalool of Citrus aurantium against target protein Human Plasminogen Activation Loop Peptide - PDB 4DCB. Results: A total of ten compounds were screened, of these Zingiberene, Menthol, Citronellol, Eugenol, Limonene, Myrcene, and Linalool showed high binding against active amino acid residue 195. Conclusion: Based on further experiments and clinical trials, the formulation Sikkanjar Manapagu could be proved to be effective in thrombolytic treatment.


2021 ◽  
Author(s):  
Bradley M Readnour ◽  
Yetunde A Ayinuola ◽  
Brady Russo ◽  
Zhong Liang ◽  
Vincent A Fischetti ◽  
...  

Human plasminogen (hPg)-binding M-protein (PAM), a major virulence factor of Pattern D Streptococcus pyogenes (GAS), is the primary receptor responsible for binding and activating hPg. PAM is covalently bound to the cell wall (CW) through cell membrane (CM)-resident sortase A (SrtA)-catalyzed cleavage of the PAM-proximal C-terminal LPST¯-GEAA motif present immediately upstream of its transmembrane domain (TMD), and subsequent transpeptidation to the CW. These steps expose the N-terminus of PAM to the extracellular milieu (EM) to interact with PAM ligands, e.g., hPg. Previously, we found that inactivation of SrtA showed little reduction in functional binding of PAM to hPg, indicating that PAM retained in the cell membrane (CM) by the TMD nonetheless exposed its N-terminus to the EM. In the current study, we assessed the effects of mutating the Thr4 (P1) residue of the SrtA-cleavage site in PAM (Thr355 in PAM) to delay PAM in the CM in the presence of SrtA. Using rSrtA in vitro, LPSYGEAA and LPSWGEAA peptides were shown to have low activities, while LPSTGEAA had the highest activity. Isolated CM fractions of AP53/DSrtA cells showed that LPSYGEAA and LPSWGEAA peptides were cleaved at substantially faster rates than LPSTGEAA, even in CMs with an AP53/DSrtA/PAM[T355Y] double mutation, but the transpeptidation step did not occur. These results implicate another CM-resident enzyme that cleaves LPSYGEAA and LPSWGEAA motifs, most likely LPXTGase, but cannot catalyze the transpeptidation step. We conclude that the natural P1 (Thr) of the SrtA cleavage site has evolved to dampen PAM from nonfunctional cleavage by LPXTGase.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1614
Author(s):  
Yesenia Osorio-Aguilar ◽  
Maria Cristina Gonzalez-Vazquez ◽  
Diana Elizabeth Hernandez-Ceron ◽  
Patricia Lozano-Zarain ◽  
Ygnacio Martinez-Laguna ◽  
...  

Haemophilus influenzae is the causal agent of invasive pediatric diseases, such as meningitis, epiglottitis, pneumonia, septic arthritis, pericarditis, cellulitis, and bacteremia (serotype b). Non-typeable H. influenzae (NTHi) strains are associated with localized infections, such as otitis media, conjunctivitis, sinusitis, bronchitis, and pneumonia, and can cause invasive diseases, such as as meningitis and sepsis in immunocompromised hosts. Enolase is a multifunctional protein and can act as a receptor for plasminogen, promoting its activation to plasmin, which leads to the degradation of components of the extracellular matrix, favoring host tissue invasion. In this study, using molecular docking, three important residues involved in plasminogen interaction through the plasminogen-binding motif (251EFYNKENGMYE262) were identified in non-typeable H. influenzae enolase (NTHiENO). Interaction with the human plasminogen kringle domains is conformationally stable due to the formation of four hydrogen bonds corresponding to enoTYR253-plgGLU1 (K2), enoTYR253-plgGLY310 (K3), and enoLYS255-plgARG471/enoGLU251-plgLYS468 (K5). On the other hand, in vitro assays, such as ELISA and far-western blot, showed that NTHiENO is a plasminogen-binding protein. The inhibition of this interaction using polyclonal anti-NTHiENO antibodies was significant. With these results, we can propose that NTHiENO–plasminogen interaction could be one of the mechanisms used by H. influenzae to adhere to and invade host cells.


2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Olawole Ayinuola ◽  
Yetunde A. Ayinuola ◽  
Cunjia Qiu ◽  
Shaun W. Lee ◽  
Victoria A. Ploplis ◽  
...  

Author(s):  
Olawole Ayinuola ◽  
Yetunde Ayinuola ◽  
Cunjia Qiu ◽  
Shaun Lee ◽  
Victoria Ploplis ◽  
...  

M-protein (PAM) largely contributes to the pathogenesis of Pattern D Group A Streptococcus pyogenes (GAS). However, the mechanism of complex formation is unknown. In a system consisting of a Class II PAM from Pattern D GAS isolate NS88.2 (PAMNS88.2), with one K2hPg binding a-repeat in its A-domain, we employed biophysical techniques to analyze the mechanism of the K2hPg/PAMNS88.2 interaction. We show that apo-PAMNS88.2 is a coiled-coil homodimer (M.Wt. ~80 kDa) at 4°C - 25°C, and is monomeric (M.Wt. ~40 kDa) at 37°C, demonstrating a temperature-dependent dissociation of PAMNS88.2 over a narrow temperature range. PAMNS88.2 displayed a single tight binding site for K2hPg at 4°C, which progressively increased at 25°C through 37°C. We isolated the K2hPg/PAMNS88.2 complexes at 4°C, 25°C, and 37°C and found molecular weights of ~50 kDa at each temperature, corresponding to a 1:1 (m:m) K2hPg/PAMNS88.2 monomer complex. hPg activation experiments by streptokinase demonstrated that the hPg/PAMNS88.2 monomer complexes are fully functional. The data show that PAM dimers dissociate into functional monomers at physiological temperatures or when presented with the active hPg module (K2hPg) showing that PAM is a functional monomer at 37°C.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 817
Author(s):  
Anna Lokshin ◽  
Lyudmila M. Mikhaleva ◽  
Eugene I. Goufman ◽  
Marina N. Boltovskaya ◽  
Natalia B. Tikhonova ◽  
...  

The differential diagnosis of prostate cancer is problematic due to the lack of markers with high diagnostic accuracy. We previously demonstrated the increased binding of IgG to human plasminogen (PLG) in plasma of patients with prostate cancer (PC) compared to healthy controls. Heavy and light chains of PLG (PLG-H and PLG-L) were immobilized on 96-well plates and the binding of IgG to PLG-H and PLG-L was analyzed in serum from 30 prostate cancer (PC) patients, 30 patients with benign prostatic hyperplasia (BPH) and 30 healthy controls using enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that IgG from PC sera bind to PLG-H but not to PLG-L. This interaction occurred through the free IgG C-terminal lysine (Lys) that becomes exposed as a result of IgG conformational changes associated with proteolysis. Circulating levels of modified IgG with exposed C-terminal Lys (IgG-Lys) were significantly higher in PC patients than in healthy controls and in BPH. We used Receiver Operating Characteristic (ROC) analysis to calculate the sensitivity (SN) and specificity (SP) of circulating IgG-Lys for differentiating PC from BPH as 77% and 90%, respectively. The area under the curve (AUC) was 0.87. We demonstrated that the diagnostic accuracy of circulating levels of IgG-Lys is much higher than diagnostic accuracy of total PSA (tPSA).


Author(s):  
Paweł Serek ◽  
Łukasz Lewandowski ◽  
Bartłomiej Dudek ◽  
Jadwiga Pietkiewicz ◽  
Katarzyna Jermakow ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Henry M. Vu ◽  
Daniel E. Hammers ◽  
Zhong Liang ◽  
Gabrielle L. Nguyen ◽  
Mary E. Benz ◽  
...  

Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S−) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S− mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin β1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S− hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S−via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.


2021 ◽  
Vol 22 (8) ◽  
pp. 3893
Author(s):  
Hye Cheong Koo ◽  
Yi-Yong Baek ◽  
Jun-Sup Choi ◽  
Young-Myeong Kim ◽  
Bokyung Sung ◽  
...  

It has been shown previously that a novel tetrapeptide, Arg-Leu-Tyr-Glu (RLYE), derived from human plasminogen inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis, suppresses choroidal neovascularization in mice by an inhibition of VEGF receptor-2 (VEGFR-2) specific signaling pathway. In this study, we report that a modified tetrapeptide (Ac-RLYE) showed improved anti-choroidal neovascularization (CNV) efficacy in a number of animal models of neovascular age-related macular degeneration (AMD) which include rat, rabbit, and minipig. The preventive and therapeutic in vivo efficacy of Ac-RLYE via following intravitreal administration was determined to be either similar or superior to that of ranibizumab and aflibercept. Assessment of the intraocular pharmacokinetic and toxicokinetic properties of Ac-RLYE in rabbits demonstrated that it rapidly reached the retina with minimal systemic exposure after a single intravitreal dose, and it did not accumulate in plasma during repetitive dosing (bi-weekly for 14 weeks). Our results suggested that Ac-RLYE has a great potential for an alternative therapeutics for neovascular (wet) AMD. Since the amino acids in human VEGFR-2 targeted by Ac-RLYE are conserved among the animals employed in this study, the therapeutic efficacies of Ac-RLYE evaluated in those animals are predicted to be observed in human patients suffering from retinal degenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document