heparin binding domain
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 11)

H-INDEX

50
(FIVE YEARS 3)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 292-292
Author(s):  
Lubica Rauova ◽  
Andy Wang ◽  
Serge Yarovoi ◽  
Sanjay Khandelwal ◽  
Anand Padmanabhan ◽  
...  

Abstract VITT is an immune-based complication of adenoviral-based vaccines used to immunize against SARS_CoV2. The antibodies in VITT have been described as directed at the platelet-specific chemokine PF4 (CXCL4). While the clinical course and target chemokine in VITT has much in common with the better-known thrombocytopenic/prothrombotic disorder, heparin-induced thrombocytopenia (HIT), which involves antibodies directed against PF4 bound to the polyanion heparin, the specific loci where VITT and PF4/polyanion HIT antibodies bind appear to differ in studies using alanine-scanning mutations of PF4 (Nature, 2021. DOI: 10.1038/s41586-021-03744-4). The VITT antigenic site localizes to a heparin-binding domain. Unlike the dominant HIT locus, the VITT locus is conserved not only between human and mouse PF4, but also between PF4 and the related platelet-specific chemokine NAP2 (CXCL7). NAP2 is also expressed and stored in platelet alpha-granules and is present in equimolar concentrations to PF4. Unlike PF4, NAP2 avidly binds the chemokine receptor CXCR2 and strongly activates neutrophils. We now show that antibodies from patients who developed VITT after both AstraZeneca (AZ) or Johnson and Johnson (JJ) adenoviral vaccines, unlike HIT antibodies, recognize mouse PF4 (Figure 1A). More importantly, both AZ and JJ VITT antibodies bound NAP2, while none of the HIT antibodies tested bound PF4 or NAP2 in the absence of heparin (Figure 1A). These results are consistent with the alanine-scanning studies that distinguish the HIT and VITT binding sites. Dynamic light scattering (DLS) showed that NAP2 and PF4 bind to the adenoviral vectors, including Ad5 and the AZ vector ChAdOx5, which leads to expression of SARS_CoV2 spike protein. ChAdOx2 vaccine and CsCl 2-purified ChAdOx2 bound to both proteins, but form larger complexes with NAP2 than with PF4 even at lower concentrations of this chemokine (Figure 1C). Removal of anti-PF4 antibodies by hPF4-Sepharose abrogated PF4-dependent binding, but did not significantly reduce binding to NAP2 (not shown), indicating that VITT plasma contains discrete pools of anti-PF4 and anti-NAP2 antibodies that may have distinct functional properties. Sandwich ELISA (not shown) and Western blot analysis of purified VITT IgG demonstrates the presence of hPF4-IgG and NAP2-IgG immune complexes in purified patient's IgG (Figure 2A). Functional studies show that both PF4 and NAP2 can activate platelets in the presence of VITT antibodies. Anti-PF4-depleted VITT IgG fraction retains the ability to activate platelets in the presence of NAP2 (Figure 2B). Thus, unlike HIT, VITT appears to target a shared antigenic site on the related chemokines PF4 and NAP2. This raises the question as to whether NAP2, as one the most abundant platelet chemokines released from activated platelets, is involved in the initiation and propagation of the immunothrombotic response. Additional studies are needed to see whether NAP2, which can potently and specifically activate neutrophils via CXCLR2, contributes to the specific thromboinflammatory phenotype seen in VITT. We propose using FcgammaRIIA+ mice that concurrently express human PF4 and NAP2 and specific knockout of each chemokine, available in our group, to further understand the pathogenesis of VITT and its thrombocytopenic/ prothrombotic phenotype. Figure 1 Figure 1. Disclosures Padmanabhan: Veralox Therapeutics: Membership on an entity's Board of Directors or advisory committees. Cines: Dova: Consultancy; Rigel: Consultancy; Treeline: Consultancy; Arch Oncol: Consultancy; Jannsen: Consultancy; Taventa: Consultancy; Principia: Other: Data Safety Monitoring Board.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lumeng J. Yu ◽  
Victoria H. Ko ◽  
Duy T. Dao ◽  
Jordan D. Secor ◽  
Amy Pan ◽  
...  

AbstractMorbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.


2020 ◽  
Author(s):  
Anselmo Canciani ◽  
Cristina Capitanio ◽  
Serena Stanga ◽  
Silvia Faravelli ◽  
Pascal Kienlen-Campard ◽  
...  

AbstractNeurotrypsin (NT) is a highly specific nervous system multi-domain serine-protease best known for its selective processing of the potent synaptic organiser agrin. Its enzymatic activity is thought to influence processes of synaptic plasticity, with its deregulation causing accelerated neuromuscular junction (NMJ) degeneration or contributing to forms of mental retardation. Something which, based on the available literature, likely stems from NT-based regulation of agrin signalling. However, dissecting the exact biological implications of NT-agrin interplay is difficult, owing to the scarce molecular detail regarding NT activity and NT-agrin interactions. The difficult recombinant production of NT in its catalytically competent form is at the base of these limitations, and is currently constraining a more detailed molecular, biochemical and structural characterisation of the NT-agrin system. We have developed a novel strategy to reliably produce and purify a truncated but catalytically competent variant of NT called NT-mini. The characterisation of our construct highlighted almost wild type-like behaviour with comparable specificity, and conservation of modulation by calcium and heparin despite the lack of several accessory domains. With the data obtained from NT-mini it was then possible to identify NT’s heparin-binding domain, and discover a novel putative Zinc-based modulation of NT. Additionally, NT-mini allowed us to investigate the effect of NT activity on myotube formation in controlled cell-based experiments, evidencing a negative impact on myoblast fusion dependant on enzymatic activity. Collectively, this shows the viability of NT-mini as a model to study NT functionality, allowing to expand both in-vitro and “in-cellulo” investigations and providing a foundation to unravel the molecular underpinnings and biological significance of NT-agrin interactions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Linda Koehler ◽  
Gloria Ruiz-Gómez ◽  
Kanagasabai Balamurugan ◽  
Sandra Rother ◽  
Joanna Freyse ◽  
...  

AbstractPathological healing characterized by abnormal angiogenesis presents a serious burden to patients’ quality of life requiring innovative treatment strategies. Glycosaminoglycans (GAG) are important regulators of angiogenic processes. This experimental and computational study revealed how sulfated GAG derivatives (sGAG) influence the interplay of vascular endothelial growth factor (VEGF)165 and its heparin-binding domain (HBD) with the signaling receptor VEGFR-2 up to atomic detail. There was profound evidence for a HBD-GAG-HBD stacking configuration. Here, the sGAG act as a “molecular glue” leading to recognition modes in which sGAG interact with two VEGF165-HBDs. A 3D angiogenesis model demonstrated the dual regulatory role of high-sulfated derivatives on the biological activity of endothelial cells. While GAG alone promote sprouting, they downregulate VEGF165-mediated signaling and, thereby, elicit VEGF165-independent and -dependent effects. These findings provide novel insights into the modulatory potential of sGAG derivatives on angiogenic processes and point towards their prospective application in treating abnormal angiogenesis.


2019 ◽  
Author(s):  
Oleg Klykov ◽  
Carmen van der Zwaan ◽  
Albert J.R. Heck ◽  
Alexander B. Meijer ◽  
Richard A. Scheltema

AbstractUpon activation, fibrinogen forms large fibrin biopolymers that coalesce into clots that assist in wound healing. Limited insights into their molecular architecture, due to the sheer size and insoluble character of fibrin clots, have however restricted our ability to develop novel treatments for clotting diseases. The so far resolved disparate structural details did provide insights into linear elongation; however, molecular details like the C-terminal domain of theα-chain, the heparin-binding domain on theβ-chain, and others involved in lateral aggregation are lacking. To illuminate these dark areas, we applied crosslinking mass spectrometry (XL-MS) to obtain biochemical evidence in the form of over 300 distance constraints and combined this with structural modeling. These restraints additionally define the interaction network of the clots and e.g. provide molecular details for the interaction with Human Serum Albumin (HSA). We were able to construct the models of fibrinogenα(excluding two highly flexible regions) andβ, confirm these models with known structural arrangements and map how the structure laterally aggregates to form intricate lattices together with fibrinogenγ. We validate the final model by mapping mutations leading to impaired clot formation. From a list of 22 mutations, we uncovered structural features for all, including a crucial role forβArg’196 in lateral aggregation. The resulting model will be invaluable for research on dysfibrinogenemia and amyloidosis, as it provides insights into the molecular mechanisms of thrombosis and bleeding disorders related to fibrinogen variants. The structure is provided in the PDB-DEV repository.


2019 ◽  
Vol 30 (17) ◽  
pp. 2218-2226 ◽  
Author(s):  
Jared T. Saunders ◽  
Jean E. Schwarzbauer

The extracellular matrix (ECM) proteins fibronectin (FN) and type I collagen (collagen I) are codistributed in many tissues, and collagens have been shown to depend on an FN matrix for fibrillogenesis. Microscopic analysis of a fibroblast ECM showed colocalization of procollagen I with FN fibrils, and proteolytic cleavage of procollagen to initiate fibril formation was significantly reduced with inhibition of FN matrix assembly. We examined the role of FN matrix in procollagen processing by the C-propeptide proteinase bone morphogenetic protein 1 (BMP-1). We found that BMP-1 binds to a cell-assembled ECM in a dose-dependent manner and that, like procollagen, BMP-1 colocalizes with FN fibrils in the matrix microenvironment. Binding studies with FN fragments identified a binding site in FN’s primary heparin-binding domain. In solution, BMP-1–FN interactions and BMP-1 cleavage of procollagen I were both enhanced by the presence of heparin, suggesting a role for heparin in complex formation during proteolysis. Indeed, addition of heparin enhanced the rate of procollagen cleavage by matrix-bound BMP-1. Our results show that matrix localization of this proteinase facilitates the initiation of collagen assembly and suggest a model in which FN matrix and associated heparan sulfate act as a scaffold to organize enzyme and substrate for procollagen processing.


2019 ◽  
Vol 91 (4) ◽  
pp. 26-32
Author(s):  
O. I. Krynina ◽  
◽  
K. Yu. Manoilov ◽  
D. V. Kolybo ◽  
S. V. Komisarenko ◽  
...  

Blood ◽  
2019 ◽  
Vol 133 (24) ◽  
pp. 2559-2569 ◽  
Author(s):  
Jun Ishihara ◽  
Ako Ishihara ◽  
Richard D. Starke ◽  
Claire R. Peghaire ◽  
Koval E. Smith ◽  
...  

Abstract During wound healing, the distribution, availability, and signaling of growth factors (GFs) are orchestrated by their binding to extracellular matrix components in the wound microenvironment. Extracellular matrix proteins have been shown to modulate angiogenesis and promote wound healing through GF binding. The hemostatic protein von Willebrand factor (VWF) released by endothelial cells (ECs) in plasma and in the subendothelial matrix has been shown to regulate angiogenesis; this function is relevant to patients in whom VWF deficiency or dysfunction is associated with vascular malformations. Here, we show that VWF deficiency in mice causes delayed wound healing accompanied by decreased angiogenesis and decreased amounts of angiogenic GFs in the wound. We show that in vitro VWF binds to several GFs, including vascular endothelial growth factor-A (VEGF-A) isoforms and platelet-derived growth factor-BB (PDGF-BB), mainly through the heparin-binding domain (HBD) within the VWF A1 domain. VWF also binds to VEGF-A and fibroblast growth factor-2 (FGF-2) in human plasma and colocalizes with VEGF-A in ECs. Incorporation of the VWF A1 HBD into fibrin matrices enables sequestration and slow release of incorporated GFs. In vivo, VWF A1 HBD-functionalized fibrin matrices increased angiogenesis and GF retention in VWF-deficient mice. Treatment of chronic skin wounds in diabetic mice with VEGF-A165 and PDGF-BB incorporated within VWF A1 HBD-functionalized fibrin matrices accelerated wound healing, with increased angiogenesis and smooth muscle cell proliferation. Therefore, the VWF A1 HBD can function as a GF reservoir, leading to effective angiogenesis and tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document