scholarly journals Modulation of tissue plasminogen activator-catalyzed plasminogen activation by synthetic peptides derived from the amino-terminal heparin binding domain of fibronectin.

1993 ◽  
Vol 268 (25) ◽  
pp. 18924-18928
Author(s):  
M.S. Stack ◽  
S.V. Pizzo
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James J. Miller ◽  
Richard N. Bohnsack ◽  
Linda J. Olson ◽  
Mayumi Ishihara ◽  
Kazuhiro Aoki ◽  
...  

AbstractPlasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.


1985 ◽  
Vol 40 (6) ◽  
pp. 853-861 ◽  
Author(s):  
K. Deguchi ◽  
S. Murashima ◽  
S. Shirakawa ◽  
C. Soria ◽  
J. Soria ◽  
...  

1997 ◽  
Vol 272 (10) ◽  
pp. 6784-6791 ◽  
Author(s):  
Irina Mikhailenko ◽  
Dmitry Krylov ◽  
Kelley McTigue Argraves ◽  
David D. Roberts ◽  
Gene Liau ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 1995-2003 ◽  
Author(s):  
C Legrand ◽  
V Thibert ◽  
V Dubernard ◽  
B Begault ◽  
J Lawler

Abstract We have investigated the molecular requirements for thrombospondin (TSP) to bind to the platelet surface and to support the subsequent secretion-dependent platelet aggregation. For this, we used two distinct murine monoclonal antibodies (MoAbs), designated MAI and MAII, raised against human platelet TSP, and three polyclonal antibodies, designated R3, R6, and R5, directed against fusion proteins containing the type 1 (Gly 385-Ile 522), type 2 (Pro 559-Ile 669), and type 3 (Asp 784-Val 932) repeating sequences, respectively. Among them, R5 and R6, but not R3, inhibited thrombin-induced aggregation of washed platelets and the concomitant secretion of serotonin. These antibodies, however, did not inhibit the expression of TSP on thrombin-activated platelets, as measured by the binding of a radiolabeled MoAb to TSP, suggesting that they may inhibit platelet aggregation by interfering with a physiologic event subsequent to TSP binding. In contrast, MoAb MAII, which reacts with an epitope located within the heparin-binding domain of TSP, inhibited both TSP surface expression and platelet aggregation/secretion induced by thrombin. In addition, this MoAb inhibited in a dose-dependent manner (IC50 approximately 0.5 mumol/L) the interaction of 125I-TSP with immobilized fibrinogen and platelet glycoprotein IV, both potential physiologic receptors for TSP on thrombin-activated platelets. These results indicate that the interaction of TSP with the surface of activated platelets can be modulated at the level of a specific epitope located within the amino terminal heparin-binding domain of the molecule. Thus, selective inhibition of the platelet/TSP interaction may represent an alternative approach to the inhibition of platelet aggregation.


2009 ◽  
Vol 60 (2) ◽  
pp. 559-568 ◽  
Author(s):  
Chunya Bu ◽  
Lei Gao ◽  
Weidong Xie ◽  
Jainwei Zhang ◽  
Yuhong He ◽  
...  

2017 ◽  
Vol 293 (1) ◽  
pp. 203-214 ◽  
Author(s):  
Daniela Lau ◽  
Dzemal Elezagic ◽  
Gabriele Hermes ◽  
Matthias Mörgelin ◽  
Alexander P. Wohl ◽  
...  

Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 1995-2003
Author(s):  
C Legrand ◽  
V Thibert ◽  
V Dubernard ◽  
B Begault ◽  
J Lawler

We have investigated the molecular requirements for thrombospondin (TSP) to bind to the platelet surface and to support the subsequent secretion-dependent platelet aggregation. For this, we used two distinct murine monoclonal antibodies (MoAbs), designated MAI and MAII, raised against human platelet TSP, and three polyclonal antibodies, designated R3, R6, and R5, directed against fusion proteins containing the type 1 (Gly 385-Ile 522), type 2 (Pro 559-Ile 669), and type 3 (Asp 784-Val 932) repeating sequences, respectively. Among them, R5 and R6, but not R3, inhibited thrombin-induced aggregation of washed platelets and the concomitant secretion of serotonin. These antibodies, however, did not inhibit the expression of TSP on thrombin-activated platelets, as measured by the binding of a radiolabeled MoAb to TSP, suggesting that they may inhibit platelet aggregation by interfering with a physiologic event subsequent to TSP binding. In contrast, MoAb MAII, which reacts with an epitope located within the heparin-binding domain of TSP, inhibited both TSP surface expression and platelet aggregation/secretion induced by thrombin. In addition, this MoAb inhibited in a dose-dependent manner (IC50 approximately 0.5 mumol/L) the interaction of 125I-TSP with immobilized fibrinogen and platelet glycoprotein IV, both potential physiologic receptors for TSP on thrombin-activated platelets. These results indicate that the interaction of TSP with the surface of activated platelets can be modulated at the level of a specific epitope located within the amino terminal heparin-binding domain of the molecule. Thus, selective inhibition of the platelet/TSP interaction may represent an alternative approach to the inhibition of platelet aggregation.


Author(s):  
M Hoylaerts ◽  
D C Rijken ◽  
H R Lijnen ◽  
D Collen

The activation of human plasminogen (P) by two-chain tissue plasminogen activator (A) was studied in the presence of fibrin films (F) of increasing size and surface density. Initial rates of plasminogen activation (v) were determined as a function both of the plasminogen and fibrin concentration. The activation rate was strongly dependent on the presence of fibrin and plots of 1/v versus 1/ [p] or 1 /[F] yielded straight lines. The kinetic data were in agreement with the following reaction scheme.According to this model tissue plasminogen activator would bind to fibrin with a dissociation constant (KF of 0.2 µM and this complex fixes plasminogen with a Michaelis constant (Kp’) of 0.15 µM (Glu-plasminogen) or 0.02 µM (Lys-plasminogen) to form a ternary complex, converted to plasmin with a catalytic rate constant kcat = 0.05 s-1. This mechanism implies that both plasminogen and tissue plasminogen activator are concentrated on the fibrin surface through formation of a fibrin bridge. Activation of plasminogen in the absence of fibrin occurs with Km = 65 µM (Glu-plasminogen) or Km= 19 µM (Lys-plasminogen) and kcat = 0.05 s-1. Our data suggest that fibrin enhances the activation rate of plasminogen by tissue plasminogen activator by increasing the affinity of plasminogen for fibrin-bound tissue plasminogen activator and not by influencing the catalytic efficiency of the enzµMe. These data also support the hypothesis that fibrinolysis is both triggered by and directed towards fibrin.Generated plasmin was quantitated by measuring the rate of solubilization of 125I-labeled fibrin.


Sign in / Sign up

Export Citation Format

Share Document