Molecular mechanisms of proteinuria in diabetes

2008 ◽  
Vol 36 (5) ◽  
pp. 946-949 ◽  
Author(s):  
Luigi Gnudi

The epidemic of Type 2 diabetes, and the parallel rising incidence of end-stage renal disease, is progressively increasing worldwide. Kidney disease is one of the major chronic microvascular complications of diabetes, and both metabolic and haemodynamic perturbations participate in its development and progression towards end-stage renal disease. Hypertension and poor metabolic control seem to interact in causing the relentless decline in renal function seen in diabetic patients. Both high circulating glucose levels and increased glomerular capillary pressure act in conjunction in stimulating the different cellular pathways leading to kidney disease. It has been suggested that mechanical forces at the glomerular level may aggravate the metabolic insult by stimulating excessive cellular glucose uptake by up-regulating the facilitative GLUT-1 (glucose transporter-1). We propose the existence of a self-maintaining cellular mechanism whereby a haemodynamic stimulus on glomerular cells induces the up-regulation of GLUT-1, an event followed by greater glucose uptake and activation of intracellular metabolic pathways, resulting in excess TGF-β1 (transforming growth factor-β1) production. TGF-β1, one of the major prosclerotic cytokines in diabetic kidney disease, maintains the up-regulation of GLUT-1, perpetuating a series of cellular events that result, as their ultimate effect, in increased extracellular matrix synthesis and altered permeability of the glomerular filtration barrier. Mechanical and metabolic coupling could represent an important mechanism of injury in the diabetic kidney.

2017 ◽  
Vol 312 (4) ◽  
pp. F716-F731 ◽  
Author(s):  
Raimund Pichler ◽  
Maryam Afkarian ◽  
Brad P. Dieter ◽  
Katherine R. Tuttle

Increasing incidences of obesity and diabetes have made diabetic kidney disease (DKD) the leading cause of chronic kidney disease and end-stage renal disease worldwide. Despite current pharmacological treatments, including strategies for optimizing glycemic control and inhibitors of the renin-angiotensin system, DKD still makes up almost one-half of all cases of end-stage renal disease in the United States. Compelling and mounting evidence has clearly demonstrated that immunity and inflammation play a paramount role in the pathogenesis of DKD. This article reviews the involvement of the immune system in DKD and identifies important roles of key immune and inflammatory mediators. One of the most recently identified biomarkers is serum amyloid A, which appears to be relatively specific for DKD. Novel and evolving treatment approaches target protein kinases, transcription factors, chemokines, adhesion molecules, growth factors, advanced glycation end-products, and other inflammatory molecules. This is the beginning of a new era in the understanding and treatment of DKD, and we may have finally reached a tipping point in our fight against the growing burden of DKD.


Sign in / Sign up

Export Citation Format

Share Document