Cytochrome c6A: discovery, structure and properties responsible for its low haem redox potential

2008 ◽  
Vol 36 (6) ◽  
pp. 1175-1179 ◽  
Author(s):  
Jonathan A.R. Worrall ◽  
Ben F. Luisi ◽  
Beatrix G. Schlarb-Ridley ◽  
Derek S. Bendall ◽  
Christopher J. Howe

Cytochrome c6A is a unique dithio-cytochrome of green algae and plants. It has a very similar core structure to that of bacterial and algal cytochromes c6, but is unable to fulfil the same function of transferring electrons from cytochrome f to Photosystem I. A key feature of cytochrome c6A is that its haem midpoint potential is more than 200 mV below that of cytochrome c6 (Em≈+340 mV) despite both cytochromes having histidine and methionine residues as axial haem-iron ligands. One salient difference between the haem pockets is that a valine residue in cytochrome c6A replaces a highly conserved glutamine residue in cytochrome c6. This difference has been probed using site-directed mutagenesis, X-ray crystallography and protein film voltammetry studies. It has been found that the stereochemistry of the glutamine residue within the haem pocket has a destabilizing effect and is responsible for tuning the haem's midpoint potential by over 100 mV. This large effect may have contributed to the evolution of a new biological function for cytochrome c6A.

2020 ◽  
Vol 295 (36) ◽  
pp. 12618-12634
Author(s):  
H. Diessel Duan ◽  
Nishya Mohamed-Raseek ◽  
Anne-Frances Miller

A remarkable charge transfer (CT) band is described in the bifurcating electron transfer flavoprotein (Bf-ETF) from Rhodopseudomonas palustris (RpaETF). RpaETF contains two FADs that play contrasting roles in electron bifurcation. The Bf-FAD accepts electrons pairwise from NADH, directs one to a lower-reduction midpoint potential (E°) carrier, and the other to the higher-E° electron transfer FAD (ET-FAD). Previous work noted that a CT band at 726 nm formed when ET-FAD was reduced and Bf-FAD was oxidized, suggesting that both flavins participate. However, existing crystal structures place them too far apart to interact directly. We present biochemical experiments addressing this conundrum and elucidating the nature of this CT species. We observed that RpaETF missing either FAD lacked the 726 nm band. Site-directed mutagenesis near either FAD produced altered yields of the CT species, supporting involvement of both flavins. The residue substitutions did not alter the absorption maximum of the signal, ruling out contributions from residue orbitals. Instead, we propose that the residue identities modulate the population of a protein conformation that brings the ET-flavin and Bf-flavin into direct contact, explaining the 726 nm band based on a CT complex of reduced ET-FAD and oxidized Bf-FAD. This is corroborated by persistence of the 726 nm species during gentle protein denaturation and simple density functional theory calculations of flavin dimers. Although such a CT complex has been demonstrated for free flavins, this is the first observation of such, to our knowledge, in an enzyme. Thus, Bf-ETFs may optimize electron transfer efficiency by enabling direct flavin-flavin contact.


2003 ◽  
Vol 125 (50) ◽  
pp. 15352-15358 ◽  
Author(s):  
Kondo François Aguey-Zinsou ◽  
Paul V. Bernhardt ◽  
Silke Leimkühler

2014 ◽  
Vol 70 (a1) ◽  
pp. C1283-C1283
Author(s):  
Gilles Labesse ◽  
Thomas Alexandre ◽  
Laurène Vaupré ◽  
Isabelle Salard-Arnaud ◽  
Joséphine Lai Kee Him ◽  
...  

Inosine-5'-monophosphate dehydrogenase (1, 2) (IMPDH) is a major target for antiviral, antiparasitic, antileukemic and immunosuppressive therapies. It is an ubiquitous and essential enzyme for the biosynthesis of guanosine nucleotides. Up to now, IMPDHs have been reported as tetrameric enzymes harbouring a catalytic domain and a tandem of cystathionine-ß-synthase (CBS) modules. The latter had no precise function assigned despite their nearly absolute conservation among IMPDHs and consistent indication of their importance in vivo. The aim of our study was to provide evidence for the role of the CBS modules on the quaternary structure and on the regulation of IMPDHs. A multidisciplinary approach involving enzymology, site-directed mutagenesis, analytical ultracentrifugation, X-ray crystallography, SAXS, cryo-electron microscopy and molecular modelling allowed us to demonstrate that the Pseudomonas aeruginosa IMPDH is functionally active as an octamer and allosterically regulated by MgATP via each CBS module. Revisiting deposited structural data, we found this newly discovered octameric organization conserved in other IMPDH structures. Meanwhile, we demonstrated that the human IMPDH1 formed two distinct octamers that can pile up into isolated fibres in the presence of MgATP while its pathogenic mutant D226N, localised into the CBS domains, appeared to form massively aggregating fibres. The dramatic impact of this mutation could explain the severe retinopathy adRP10. Our data (3) revealed for the first time that IMPDH has an octameric architecture modulated by MgATP binding to the CBS modules, inducing large structural rearrangements. Thus, the regulatory CBS modules in IMPDHs are functional and they can either modulate catalysis or/and macromolecular assembly. Targeting the conserved effector binding pockets identified within the CBS modules might be promising to develop antibacterial compounds or drugs to counter retinopathy onset.


2007 ◽  
Vol 409 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Andrew J. Gates ◽  
David J. Richardson ◽  
Julea N. Butt

Paracoccus pantotrophus expresses two nitrate reductases associated with respiratory electron transport, termed NapABC and NarGHI. Both enzymes derive electrons from ubiquinol to reduce nitrate to nitrite. However, while NarGHI harnesses the energy of the quinol/nitrate couple to generate a transmembrane proton gradient, NapABC dissipates the energy associated with these reducing equivalents. In the present paper we explore the nitrate reductase activity of purified NapAB as a function of electrochemical potential, substrate concentration and pH using protein film voltammetry. Nitrate reduction by NapAB is shown to occur at potentials below approx. 0.1 V at pH 7. These are lower potentials than required for NarGH nitrate reduction. The potentials required for Nap nitrate reduction are also likely to require ubiquinol/ubiquinone ratios higher than are needed to activate the H+-pumping oxidases expressed during aerobic growth where Nap levels are maximal. Thus the operational potentials of P. pantotrophus NapAB are consistent with a productive role in redox balancing. A Michaelis constant (KM) of approx. 45 μM was determined for NapAB nitrate reduction at pH 7. This is in line with studies on intact cells where nitrate reduction by Nap was described by a Monod constant (KS) of less than 15 μM. The voltammetric studies also disclosed maximal NapAB activity in a narrow window of potential. This behaviour is resistant to change of pH, nitrate concentration and inhibitor concentration and its possible mechanistic origins are discussed.


2020 ◽  
Vol 117 (50) ◽  
pp. 31838-31849
Author(s):  
Rebecca Ebenhoch ◽  
Simone Prinz ◽  
Susann Kaltwasser ◽  
Deryck J. Mills ◽  
Robert Meinecke ◽  
...  

Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1−GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.


1998 ◽  
Vol 120 (46) ◽  
pp. 11994-11999 ◽  
Author(s):  
Judy Hirst ◽  
Guy N. L. Jameson ◽  
James W. A. Allen ◽  
Fraser A. Armstrong

Sign in / Sign up

Export Citation Format

Share Document