cbs domains
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Liu ◽  
Junping Feng ◽  
Wenyu Ma ◽  
Yang Zhou ◽  
Zongbin Ma

Soil and freshwater salinization is increasingly becoming a problem worldwide and has adversely affected plant growth. However, most of the related studies have focused on sodium ion (Na+) stress, with relatively little research on chloride ion (Cl–) stress. Here, we found that upland cotton (Gossypium hirsutum) plants accumulated Cl– and exhibited strong growth inhibition under NaCl or KCl treatment. Then, a chloride channel gene (GhCLCg-1) was cloned from upland cotton. Phylogenetic and sequence analyses indicated that GhCLCg-1 was highly homologous to AtCLCg and also have conserved voltage_CLC and CBS domains. The subcellular localization assay showed that GhCLCg-1 was localized on the vacuolar membrane. Gene expression analyses revealed that the expression of GhCLCg-1 increased rapidly in cotton in response to chloride stress (NaCl or KCl), and the transcript levels increased as the chloride stress intensified. The overexpression of GhCLCg-1 in Arabidopsis thaliana changed the uptake of ions with a decrease of the Na+/K+ ratios in the roots, stems, and leaves, and enhanced salt tolerance. In contrast, silencing GhCLCg-1 in cotton plants increased the Cl– contents in the roots, stems, and leaves and the Na+/K+ ratios in the stems and leaves, resulting in compromised salt tolerance. These results provide important insights into the toxicity of chloride to plants and also indicate that GhCLCg-1 can positively regulates salt tolerance by adjusting ion accumulation in upland cotton.


2021 ◽  
Author(s):  
Zdeněk Knejzlík ◽  
Michal Doležal ◽  
Klára Herkommerová ◽  
Kamila Clarova ◽  
Martin Klima ◽  
...  

Purine metabolism plays a pivotal role in bacterial life cycle, however, regulation of the de novo and purine salvage pathways have not been extensively detailed in mycobacteria. By gene knockout, biochemical and structural analyses, we identified Mycobacterium smegmatis (Msm) and Mycobacterium tuberculosis (Mtb) guaB1 gene product as a novel type of guanosine 5'-monophosphate reductase (GMPR), which recycles guanosine monophosphate to inosine monophosphate within the purine salvage pathway and contains cystathione β-synthase (CBS) domains with atypical orientation in the octamer. CBS domains share a much larger interacting area with a conserved catalytic domain in comparison with the only known CBS containing protozoan GMPR and closely related inosine monophosphate dehydrogenase structures. Our results revealed essential effect of pH on allosteric regulation of Msm GMPR activity and oligomerization with adenine and guanosine nucleotides binding to CBS domains.Bioinformatic analysis indicated the presence of GMPRs containing CBS domains across the entire Actinobacteria phylum.


Author(s):  
Yevgen Zolotarov ◽  
Chao Ma ◽  
Irene González-Recio ◽  
Serge Hardy ◽  
Gijs A. C. Franken ◽  
...  

AbstractCyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-β-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Larissa Krüger ◽  
Christina Herzberg ◽  
Dennis Wicke ◽  
Heike Bähre ◽  
Jana L. Heidemann ◽  
...  

AbstractMany bacteria use cyclic di-AMP as a second messenger to control potassium and osmotic homeostasis. In Bacillus subtilis, several c-di-AMP binding proteins and RNA molecules have been identified. Most of these targets play a role in controlling potassium uptake and export. In addition, c-di-AMP binds to two conserved target proteins of unknown function, DarA and DarB, that exclusively consist of the c-di-AMP binding domain. Here, we investigate the function of the c-di-AMP-binding protein DarB in B. subtilis, which consists of two cystathionine-beta synthase (CBS) domains. We use an unbiased search for DarB interaction partners and identify the (p)ppGpp synthetase/hydrolase Rel as a major interaction partner of DarB. (p)ppGpp is another second messenger that is formed upon amino acid starvation and under other stress conditions to stop translation and active metabolism. The interaction between DarB and Rel only takes place if the bacteria grow at very low potassium concentrations and intracellular levels of c-di-AMP are low. We show that c-di-AMP inhibits the binding of DarB to Rel and the DarB–Rel interaction results in the Rel-dependent accumulation of pppGpp. These results link potassium and c-di-AMP signaling to the stringent response and thus to the global control of cellular physiology.


2020 ◽  
Author(s):  
Yevgen Zolotarov ◽  
Chao Ma ◽  
Irene González-Recio ◽  
Serge Hardy ◽  
Gijs Franken ◽  
...  

ABSTRACTCyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like protein 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-β-synthase (CBS) domains. In silico modeling of the interaction using the reported structures of both CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 domain. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the Golgi-apparatus. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


2020 ◽  
Vol 6 (33) ◽  
pp. eabb4747 ◽  
Author(s):  
Sensen Zhang ◽  
Yang Liu ◽  
Bing Zhang ◽  
Jun Zhou ◽  
Tianyu Li ◽  
...  

CLC family proteins translocate chloride ions across cell membranes to maintain the membrane potential, regulate the transepithelial Cl− transport, and control the intravesicular pH among different organelles. CLC-7/Ostm1 is an electrogenic Cl−/H+ antiporter that mainly resides in lysosomes and osteoclast ruffled membranes. Mutations in human CLC-7/Ostm1 lead to lysosomal storage disorders and severe osteopetrosis. Here, we present the cryo–electron microscopy (cryo-EM) structure of the human CLC-7/Ostm1 complex and reveal that the highly glycosylated Ostm1 functions like a lid positioned above CLC-7 and interacts extensively with CLC-7 within the membrane. Our complex structure reveals a functionally crucial domain interface between the amino terminus, TMD, and CBS domains of CLC-7. Structural analyses and electrophysiology studies suggest that the domain interaction interfaces affect the slow gating kinetics of CLC-7/Ostm1. Thus, our study deepens understanding of CLC-7/Ostm1 transporter and provides insights into the molecular basis of the disease-related mutations.


2020 ◽  
Author(s):  
Viktor A. Anashkin ◽  
Anu Salminen ◽  
Victor N. Orlov ◽  
Reijo Lahti ◽  
Alexander A. Baykov

ABSTRACTA quarter of prokaryotic Family II inorganic pyrophosphatases (PPases) contain a regulatory insert comprised of two cystathionine β-synthase (CBS) domains and one DRTGG domain in addition to the two catalytic domains that form canonical Family II PPases. The CBS domain-containing PPases (CBS-PPases) are allosterically activated or inhibited by adenine nucleotides that cooperatively bind to the CBS domains. Here we use chemical cross-linking and analytical ultracentrifugation to show that CBS-PPases from Desulfitobacterium hafniense and four other bacterial species are active as 200–250-kDa homotetramers, which seems unprecedented among the four PPase families. The tetrameric structure is stabilized by Co2+, the essential cofactor, pyrophosphate, the substrate, and adenine nucleotides, including diadenosine tetraphosphate. The deletion variants of dhPPase containing only catalytic or regulatory domains are dimeric. Co2+ depletion by incubation with EDTA converts CBS-PPase into inactive tetrameric and dimeric forms. Dissociation of tetrameric CBS-PPase and its catalytic part by dilution renders them inactive. The structure of CBS-PPase tetramer was modelled from the structures of dimeric catalytic and regulatory parts. These findings signify the role of the unique oligomeric structure of CBS-PPase in its multifaced regulation.


2019 ◽  
Author(s):  
Matthias Grieschat ◽  
Katharina Langschwager ◽  
Raul E. Guzman ◽  
Christoph Fahlke ◽  
Alexi K. Alekov

AbstractMammalian CLC anion/proton exchangers control the pH and [Cl-] of the endolysosomal system, one of the major cellular nutrient uptake pathways. We explored the regulation of the vesicular transporters ClC-3, ClC-4, and ClC-5 by the adenylic system components ATP, ADP, and AMP. Using heterologous expression and whole-cell electrophysiology, we demonstrated that cytosolic ATP and ADP but not AMP and Mg2+-free ADP enhance CLC ion transport via binding to the protein C-terminal CBS domains. Biophysical investigations revealed that the effects depend on the delivery of intracellular protons into the CLC transport machinery and result from modified voltage-dependence and altered probability that CLC proteins undergo silent non-transporting cycles. Our findings demonstrate that the CLC CBS domains are able to serve as energy sensors by detecting changes in the cytosolic ATP/ADP/AMP equilibrium. The adenine nucleotide regulation of vesicular Cl-/H+ exchange creates a link between the activity of the endolysosomal system and the cellular metabolic state.


2018 ◽  
Vol 293 (46) ◽  
pp. 17705-17715 ◽  
Author(s):  
Qi He ◽  
Qi-Ying Tang ◽  
Ya-Fang Sun ◽  
Ming Zhou ◽  
Wolfgang Gärtner ◽  
...  

Cyanobacteriochromes (CBCRs) are photochromic proteins in cyanobacteria that act as photosensors. CBCRs bind bilins as chromophores and sense nearly the entire visible spectrum of light, but the regulation of the chromophorylation of CBCRs is unknown. Slr1393 from Synechocystis sp. PCC 6803 is a CBCR containing three consecutive GAF (cGMP phosphodiesterase, adenylyl cyclase, and FhlA protein) domains, of which only the third one (Slr1393g3) can be phycocyanobilin-chromophorylated. The protein Slr2111 from Synechocystis sp. PCC 6803 includes a cystathionine β-synthase (CBS) domain pair of an as yet unknown function at its N terminus. CBS domains are often characterized as sensors of cellular energy status by binding nucleotides. In this work, we demonstrate that Slr2111 strongly interacts with Slr1393 in vivo and in vitro, which generates a complex in a 1:1 molar ratio. This tight interaction inhibits the chromophorylation of Slr1393g3, even if the chromophore is present. Instead, the complex stability and thereby the chromophorylation of Slr1393 are regulated by the binding of nucleotides (ATP, ADP, AMP) to the CBS domains of Slr2111 with varying affinities. It is demonstrated that residues Asp-53 and Arg-97 of Slr2111 are involved in nucleotide binding. While ATP binds to Slr2111, the association between the two proteins gets weaker and chromophorylation of Slr1393 are enabled. In contrast, AMP binding to Slr2111 leads to a stronger association, thereby inhibiting the chromophorylation. It is concluded that Slr2111 acts as a sensor of the cellular energy status that regulates the chromophorylation of Slr1393 and thereby its function as a light-driven histidine kinase.


2016 ◽  
Vol 473 (14) ◽  
pp. 2097-2107 ◽  
Author(s):  
Viktor A. Anashkin ◽  
Anu Salminen ◽  
Natalia N. Vorobjeva ◽  
Reijo Lahti ◽  
Alexander A. Baykov

Many prokaryotic soluble PPases (pyrophosphatases) contain a pair of regulatory adenine nucleotide-binding CBS (cystathionine β-synthase) domains that act as ‘internal inhibitors’ whose effect is modulated by nucleotide binding. Although such regulatory domains are found in important enzymes and transporters, the underlying regulatory mechanism has only begun to come into focus. We reported previously that CBS domains bind nucleotides co-operatively and induce positive kinetic co-operativity (non-Michaelian behaviour) in CBS-PPases (CBS domain-containing PPases). In the present study, we demonstrate that a homodimeric ehPPase (Ethanoligenens harbinense PPase) containing an inherent mutation in an otherwise conserved asparagine residue in a loop near the active site exhibits non-co-operative hydrolysis kinetics. A similar N312S substitution in ‘co-operative’ dhPPase (Desulfitobacterium hafniense PPase) abolished kinetic co-operativity while causing only minor effects on nucleotide-binding affinity and co-operativity. However, the substitution reversed the effect of diadenosine tetraphosphate, abolishing kinetic co-operativity in wild-type dhPPase, but restoring it in the variant dhPPase. A reverse serine-to-asparagine replacement restored kinetic co-operativity in ehPPase. Molecular dynamics simulations revealed that the asparagine substitution resulted in a change in the hydrogen-bonding pattern around the asparagine residue and the subunit interface, allowing greater flexibility at the subunit interface without a marked effect on the overall structure. These findings identify this asparagine residue as lying at the ‘crossroads’ of information paths connecting catalytic and regulatory domains within a subunit and catalytic sites between subunits.


Sign in / Sign up

Export Citation Format

Share Document