General and Regional Haemodynamic Effects of Intravenous Ergotamine in Man

1983 ◽  
Vol 65 (6) ◽  
pp. 599-604 ◽  
Author(s):  
P. Tfelt-Hansen ◽  
I.-L. Kanstrup ◽  
N. J. Christensen ◽  
K. Winkler

1. The effect of intravenous ergotamine on general (blood pressure and cardiac output) and regional (splanchnic, renal and muscular) haemodynamics was studied immediately and 3 h after administration in seven male volunteers. Also plasma catecholamines were determined. 2. An increase in blood pressure with a peak just after administration was observed. The cardiac output was unchanged and the pressor effect of ergotamine was due to an increase in total peripheral resistance. 3. Plasma noradrenaline decreased 65% at the peak of the pressor effect whereas plasma adrenaline was unchanged. 4. Hepatic blood flow decreased 34% just after ergotamine administration and was normal after 3 h. Renal blood flow decreased by 29 and 19%. Calf blood flow was unchanged. These results suggest that different vascular beds in man react differently to ergotamine.

1981 ◽  
Vol 61 (6) ◽  
pp. 663-670 ◽  
Author(s):  
W. P. Anderson ◽  
P. I. Korner ◽  
J. A. Angus ◽  
C. I. Johnston

1. Mild, moderate and severe renal artery stenosis was induced in uninephrectomized conscious dogs by inflating a renal artery cuff to lower distal pressure to 60, 40 or 20 mmHg respectively. The renal artery was narrowed progressively over the next 3 days by further inflation of the cuff to relower the distal renal artery pressure to the initial values. 2. Graded progressive stenosis produced graded progressive rises in blood pressure, plasma renin activity and total renal resistance to flow over the 3 day period, followed by a return to control values 24 h after cuff deflation. 3. The rise in total renal resistance to flow was almost entirely due to the stenosis, with only small changes occurring in renal vascular resistance. 4. in moderate and severe stenosis cardiac output did not alter significantly and thus increases in blood pressure were due to increases in total peripheral resistance. in these groups the resistance to blood flow of the stenosis accounted respectively for about 36 and 26% of the rises in total peripheral resistance. Vasoconstriction of the other non-renal vascular beds accounted for the remainder of the increase in total peripheral resistance. 5. in mild stenosis the changes in both cardiac output and total peripheral resistance were variable and not statistically significant. in this group the rise in stenosis resistance was compensated by vasodilatation of the non-renal vascular beds. 6. in all groups rises in plasma renin activity and blood pressure correlated with the haemodynamic severity of the stenosis. 7. Thus the resistance to blood flow of the moderate and severe renal artery stenoses accounted for one-quarter to one-third of the increases in total peripheral resistance. The remainder of the increase in total peripheral resistance was due to vasoconstriction of nonrenal beds.


1979 ◽  
Vol 57 (5) ◽  
pp. 995-1002 ◽  
Author(s):  
David R. Jones ◽  
Robert M. Bryan Jr. ◽  
Nigel H. West ◽  
Raymond H. Lord ◽  
Brenda Clark

The regional distribution of blood flow, both before and during forced diving, was studied in the duck using radioactively labelled microspheres. Cardiac output fell from 227 ± 30 to 95 ± 16 mL kg−1 min−1 after 20–72 s of submergence and to 59 ± 18 mL kg−1 min−1 after 144–250 s of submergence. Mean arterial blood pressure did not change significantly as total peripheral resistance increased by four times during prolonged diving. Before diving the highest proportion of cardiac output went to the heart (2.6 ± 0.5%, n = 9) and kidneys (2.7 ± 0.5%, n = 9), with the brain receiving less than 1%. The share of cardiac output going to the brain and heart increased spectacularly during prolonged dives to 10.5 ± 3% (n = 5) and 15.9 ± 3.8% (n = 5), respectively, while that to the kidney fell to 0.4 ± 0.26% (n = 3). Since cardiac output declined during diving, tissue blood flow (millilitres per gram per minute) to the heart was unchanged although in the case of the brain it increased 2.35 times after 20–75 s of submergence and 8.5 times after 140–250 s of submergence. Spleen blood flow, the highest of any tissue predive (5.6 ± 1.3 mL g−1 min−1, n = 4), was insignificant during diving while adrenal flow increased markedly, in one animal reaching 7.09 mL g−1 min−1. The present results amplify general conclusions from previous research on regional distribution of blood flow in diving homeotherms, showing that, although both heart and brain receive a significant increase in the proportionate share of cardiac output during diving only the brain receives a significant increase in tissue blood flow, which increases as submergence is prolonged.


1993 ◽  
Vol 265 (6) ◽  
pp. R1276-R1283 ◽  
Author(s):  
D. H. Sigmon ◽  
W. H. Beierwaltes

Nitric oxide (NO) contributes to the regulation of regional blood flow. Inhibition of NO synthesis increases blood pressure and vascular resistance. Using radioactive microspheres and the substrate antagonist N omega-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) to block NO synthesis, we tested the hypothesis that there is a significant interaction between the vasodilator NO and the vasoconstrictor angiotensin II, which regulates regional hemodynamics. Further, we investigated the influence of anesthesia on this interaction. L-NAME increased blood pressure, decreased cardiac output, and increased total peripheral resistance in both anesthetized and conscious rats. In anesthetized rats, L-NAME decreased blood flow to visceral organs (i.e. kidney, intestine, and lung) but had little effect on blood flow to the brain, heart, or hindlimb. Treating anesthetized rats with the angiotensin II receptor antagonist losartan (10 mg/kg) attenuated the decrease in cardiac output and the increase in total peripheral resistance without affecting the pressor response to L-NAME. Losartan also attenuated the visceral hemodynamic responses to L-NAME. In conscious rats, L-NAME decreased blood flow to all organ beds. Treating these rats with losartan only marginally attenuated the increase in total peripheral resistance to L-NAME without significantly affecting the pressor response or the decrease in cardiac output. Losartan had no effect on the regional hemodynamic responses to L-NAME. These data suggest that NO-mediated vascular relaxation is an important regulator of total peripheral and organ vascular resistance. (ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 257 (2) ◽  
pp. H540-H552 ◽  
Author(s):  
S. E. Spencer ◽  
W. B. Sawyer ◽  
A. D. Loewy

L-Glutamate microinjections into the tuberal region of the lateral hypothalamic area (LHAt) caused a fall in blood pressure and heart rate in pentobarbital-anesthetized rats. The bradycardia was mediated by both beta-adrenergic and muscarinic mechanisms as demonstrated with pharmacological blockade. The hypotension was due to a decrease in cardiac output, not a decrease in total peripheral resistance. In addition, there was a reduction in coronary blood flow. If heart rate was held constant by pharmacological blockade or by electrical cardiac pacing, L-glutamate stimulation of the LHAt still caused a fall in blood pressure. When the electrically paced model was used, this hypotension was due to a fall in cardiac output. In contrast, with the pharmacological blockade of the heart, the hypotension was due to a decrease in the total peripheral resistance. The cardiac output reduction in the paced condition was not mediated solely by either beta-sympathetic or parasympathetic mechanisms as determined by pharmacological blockade. With heart rate held constant by either drugs or pacing, LHAt stimulation did not alter regional blood flow or resistance in any vascular bed, including the coronary circulation. We conclude that L-glutamate stimulation of the LHAt lowers the cardiac output and heart rate by both parasympathetic and beta-adrenergic mechanisms and elicits hypotension by lowering cardiac output in the naive and electrically paced model.


1975 ◽  
Vol 38 (4) ◽  
pp. 696-701 ◽  
Author(s):  
L. Takacs ◽  
L. A. Debreczeni ◽  
C. Farsang

After implantation of Guerin carcinoma in rats, cardiac output (by Evans-blue dilution), distribution of the organ fractions of cardiac output (by Sapirsteins's isotope indicator fractionation technique), nutritive blood flow and circulatory resistance of the organs (including the tumor) were studied. The following parameters were altered proportionately to the weight of the tumor (0.39–84.0 g): a) weight of gut and carcass diminished; b) cardiac index increased, blood pressure and total peripheral resistance decreased; c) tumor fraction of cardiac output was augmented; d) blood flow of the organs increased and their circulatory resistance decreased. Hematocrit decreased from 47.2 to 31.0% 20 days after tumor implantation. In rats with tumor the changes of blood flow may be conditioned by both anemia and the decrease in organ weight.


1963 ◽  
Vol 204 (1) ◽  
pp. 71-72 ◽  
Author(s):  
Edward D. Freis ◽  
Jay N. Cohn ◽  
Thomas E. Liptak ◽  
Aristide G. B. Kovach

The mechanism of the diastolic pressure elevation occurring during left stellate ganglion stimulation was investigated. The cardiac output rose considerably, the heart rate remained essentially unchanged, and the total peripheral resistance fell moderately. The diastolic rise appeared to be due to increased blood flow rather than to any active changes in resistance vessels.


Author(s):  
Hans T. Versmold

Systemic blood pressure (BP) is the product of cardiac output and total peripheral resistance. Cardiac output is controlled by the heart rate, myocardial contractility, preload, and afterload. Vascular resistance (vascular hindrance × viscosity) is under local autoregulation and general neurohumoral control through sympathetic adrenergic innervation and circulating catecholamines. Sympathetic innovation predominates in organs receivingflowin excess of their metabolic demands (skin, splanchnic organs, kidney), while innervation is poor and autoregulation predominates in the brain and heart. The distribution of blood flow depends on the relative resistances of the organ circulations. During stress (hypoxia, low cardiac output), a raise in adrenergic tone and in circulating catecholamines leads to preferential vasoconstriction in highly innervated organs, so that blood flow is directed to the brain and heart. Catecholamines also control the levels of the vasoconstrictors renin, angiotensin II, and vasopressin. These general principles also apply to the neonate.


Hypertension ◽  
2018 ◽  
Vol 72 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Chloe Park ◽  
Abigail Fraser ◽  
Laura D. Howe ◽  
Siana Jones ◽  
George Davey Smith ◽  
...  

1988 ◽  
Vol 254 (4) ◽  
pp. H811-H815 ◽  
Author(s):  
D. G. Parkes ◽  
J. P. Coghlan ◽  
J. G. McDougall ◽  
B. A. Scoggins

The hemodynamic and metabolic effects of long-term (5 day) infusion of human atrial natriuretic factor (ANF) were examined in conscious chronically instrumented sheep. Infusion of ANF at 20 micrograms/h, a rate below the threshold for an acute natriuretic effect, decreased blood pressure by 9 +/- 1 mmHg on day 5, associated with a fall in calculated total peripheral resistance. On day 1, ANF reduced cardiac output, stroke volume, and blood volume, effects that were associated with an increase in heart rate and calculated total peripheral resistance and a small decrease in blood pressure. On days 4 and 5 there was a small increase in urine volume and sodium excretion. On day 5 an increase in water intake and body weight was observed. No change was seen in plasma concentrations of renin, arginine vasopressin, glucose, adrenocorticotropic hormone, or protein. This study suggests that the short-term hypotensive effect of ANF results from a reduction in cardiac output associated with a fall in both stroke volume and effective blood volume. However, after 5 days of infusion, ANF lowers blood pressure via a reduction in total peripheral resistance.


1989 ◽  
Vol 256 (3) ◽  
pp. R778-R785 ◽  
Author(s):  
M. I. Talan ◽  
B. T. Engel

Heart rate, stroke volume, and intra-arterial blood pressure were monitored continuously in each of four monkeys, 18 consecutive h/day for several weeks. The mean heart rate, stroke volume, cardiac output, systolic and diastolic blood pressure, and total peripheral resistance were calculated for each minute and reduced to hourly means. After base-line data were collected for approximately 20 days, observation was continued for equal periods of time under conditions of alpha-sympathetic blockade, beta-sympathetic blockade, and double sympathetic blockade. This was achieved by intra-arterial infusion of prazosin, atenolol, or a combination of both in concentration sufficient for at least 75% reduction of response to injection of agonists. The results confirmed previous findings of a diurnal pattern characterized by a fall in cardiac output and a rise in total peripheral resistance throughout the night. This pattern was not eliminated by selective blockade, of alpha- or beta-sympathetic receptors or by double sympathetic blockade; in fact, it was exacerbated by sympathetic blockade, indicating that the sympathetic nervous system attenuates these events. Because these findings indicate that blood volume redistribution is probably not the mechanism mediating the observed effects, we have hypothesized that a diurnal loss in plasma volume may mediate the fall in cardiac output and that the rise in total peripheral resistance reflects a homeostatic regulation of arterial pressure.


Sign in / Sign up

Export Citation Format

Share Document