Exercise Capacity, Skeletal Muscle Strength and Blood Flow following Exercise Rehabilitation in Chronic Heart Failure

1995 ◽  
Vol 88 (s32) ◽  
pp. 18P-18P
Author(s):  
TP Chua ◽  
S McKinlay ◽  
M Volterrani ◽  
J Toman ◽  
AJS Coats
2006 ◽  
Vol 12 (8) ◽  
pp. S184
Author(s):  
Keisuke Kida ◽  
Naohiko Osada ◽  
Hiromitsu Sekizuka ◽  
Yuki Ishibashi ◽  
Akio Hayashi ◽  
...  

Heart ◽  
1997 ◽  
Vol 78 (5) ◽  
pp. 437-443 ◽  
Author(s):  
M. Ohtsubo ◽  
K. Yonezawa ◽  
H. Nishijima ◽  
K. Okita ◽  
A. Hanada ◽  
...  

2003 ◽  
Vol 95 (3) ◽  
pp. 1055-1062 ◽  
Author(s):  
Troy E. Richardson ◽  
Casey A. Kindig ◽  
Timothy I. Musch ◽  
David C. Poole

Chronic heart failure (CHF) reduces muscle blood flow at rest and during exercise and impairs muscle function. Using intravital microscopy techniques, we tested the hypothesis that the speed and amplitude of the capillary red blood cell (RBC) velocity ( VRBC) and flux (FRBC) response to contractions would be reduced in CHF compared with control (C) spinotrapezius muscle. The proportion of capillaries supporting continuous RBC flow was less ( P < 0.05) in CHF (0.66 ± 0.04) compared with C (0.84 ± 0.01) muscle at rest and was not significantly altered with contractions. At rest, VRBC (C, 270 ± 62; CHF, 179 ± 14 μm/s) and FRBC (C, 22.4 ± 5.5 vs. CHF, 15.2 ± 1.2 RBCs/s) were reduced (both P < 0.05) in CHF vs. C muscle. Contractions significantly (both P < 0.05) elevated VRBC (C, 428 ± 47 vs. CHF, 222 ± 15 μm/s) and FRBC (C, 44.3 ± 5.5 vs. CHF, 24.0 ± 1.2 RBCs/s) in C and CHF muscle; however, both remained significantly lower in CHF than C. The time to 50% of the final response was slowed (both P < 0.05) in CHF compared with C for both VRBC (C, 8 ± 4; CHF, 56 ± 11 s) and FRBC (C, 11 ± 3; CHF, 65 ± 11 s). Capillary hematocrit increased with contractions in C and CHF muscle but was not different ( P > 0.05) between CHF and C. Thus CHF impairs diffusive and conductive O2 delivery across the rest-to-contractions transition in rat skeletal muscle, which may help explain the slowed O2 uptake on-kinetics manifested in CHF patients at exercise onset.


2019 ◽  
Vol 21 (Supplement_L) ◽  
pp. L20-L23 ◽  
Author(s):  
Guilherme Wesley Peixoto da Fonseca ◽  
Stephan von Haehling

Abstract Sarcopaenia is defined as reduced skeletal muscle mass associated with either a decline in muscle strength or low physical performance. It has been shown to affect 17.5% of people worldwide, with a prevalence of 20% or higher in patients with heart failure (HF). Sarcopaenia has severe impact on mortality, physical capacity, and quality of life. Even though several mechanisms, such as autonomic imbalance, reduced muscle blood flow, increased inflammation, hormonal alterations, increased apoptosis, and autophagy have been proposed to fuel the pathogenesis of sarcopaenia, additional studies assessing the interaction of these conditions need to be conducted to elucidate how the presence of sarcopaenia can exacerbate the progression of HF and vice-versa. Resistance training combined with nutritional protein intake seems to be effective in the treatment of sarcopaenia, although current pharmacotherapies have not been extensively studied with this endpoint in mind. In conclusion, sarcopaenia is interwoven with HF and leads to worse exercise capacity in these patients. The mechanisms associated with this bilateral relationship between sarcopaenia and HF are still to be elucidated, leading to effective treatment, not only for the heart, but also for the skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document