Oxygen uptake kinetics during exercise in chronic heart failure: influence of peripheral vascular reserve

1999 ◽  
Vol 97 (5) ◽  
pp. 569-577 ◽  
Author(s):  
Russell T. HEPPLE ◽  
Peter. P. LIU ◽  
Michael J. PLYLEY ◽  
Jack M. GOODMAN

Exercise performance in chronic heart failure is severely impaired, due in part to a peripherally mediated limitation. In addition to impaired maximal exercise capacity, the O2 uptake (O2) response during submaximal exercise may be affected, with a greater reliance on anaerobiosis leading to early fatigue. However, the response of O2 kinetics to submaximal exercise in chronic heart failure has not been studied extensively; in particular, the relationship between oxygen utilization and the peripheral response to exercise has not been studied. The present investigation examined the time-constant (τ, corresponding to 63% of the total response fitted from exercise onset) of the O2 kinetics on-response to submaximal exercise and its relationship to maximal peripheral blood flow in patients with chronic heart failure, and compared responses with those in healthy sedentary subjects. Subjects were 10 patients with chronic heart failure (NYHA class II/III). The mean age was 50±12 years, with a mean resting left ventricular ejection fraction of 25±9%. Controls were 10 age-matched healthy subjects. O2(max) was first determined for all subjects. Repeated transitions from rest to exercise were performed on a cycle ergometer while measuring breath-by-breath responses of O2 at a fixed work rate of 50% of O2(max) (heart failure patients and healthy controls) and at a work rate equivalent to the average in heart failure patients (65 W; healthy controls only). On a separate occasion, post-maximal ischaemic exercise calf blood flow was measured (strain-gauge plethysmography).Whereas heart failure subjects displayed a significantly prolonged O2 kinetics response at a similar absolute workload (i.e. 65 W), as indicated by a longer τ value (42 s, compared with 22 s in controls; P< 0.01), there was no difference in τ at a similar relative work rate [50% of O2(max)]. In addition, heart failure subjects demonstrated a lower maximal calf blood flow (P< 0.05) than control subjects. These results indicate that patients with heart failure have a prolonged O2 kinetics on-response compared with healthy subjects at a similar absolute work rate (i.e. 65 W), but not at a similar relative work rate [50% of O2(max)]. Thus, despite a reduced maximal calf blood flow response associated with heart failure, it does not appear that this contributes to an impairment of the submaximal exercise response beyond that explained by a reduced maximal exercise capacity [O2(max)].

2010 ◽  
Vol 55 (18) ◽  
pp. 1945-1954 ◽  
Author(s):  
Fabio Esposito ◽  
Odile Mathieu-Costello ◽  
Ralph Shabetai ◽  
Peter D. Wagner ◽  
Russell S. Richardson

2018 ◽  
Vol 247 ◽  
pp. 140-145 ◽  
Author(s):  
Joshua R. Smith ◽  
Scott K. Ferguson ◽  
K. Sue Hageman ◽  
Craig A. Harms ◽  
David C. Poole ◽  
...  

1991 ◽  
Vol 71 (3) ◽  
pp. 1070-1075 ◽  
Author(s):  
M. J. Sullivan ◽  
F. R. Cobb

We examined the central hemodynamic (n = 5) and leg blood flow (n = 9) responses to one- and two-leg bicycle exercise in nine ambulatory patients with chronic heart failure due to left ventricular systolic dysfunction (ejection fraction 17 +/- 9%). During peak one- vs. two-leg exercise, leg blood flow (thermodilution) tended to be higher (1.99 +/- 0.91 vs. 1.67 +/- 0.91 l/min, P = 0.07), whereas femoral arteriovenous oxygen difference was lower (13.6 +/- 3.1 vs. 15.0 +/- 2.9 ml/dl, P less than 0.01). Comparison of data from exercise stages matched for single-leg work rate during one- vs. two-leg exercise demonstrated that cardiac output was similar while both oxygen consumption and central arteriovenous oxygen differences were lower, indicating relative improvement in the cardiac output response at a given single-leg work rate during one-leg exercise. This was accompanied by higher leg blood flow (1.56 +/- 0.76 vs. 1.83 +/- 0.72 l/min, P = 0.02) and a tendency for leg vascular resistance to be lower (92 +/- 54 vs. 80 +/- 48 Torr.l-1.min, P = 0.08) without any change in blood lactate. These data indicate that, in patients with chronic heart failure, leg vasomotor tone is dynamically regulated, independent of skeletal muscle metabolism, and is not determined solely by intrinsic abnormalities in skeletal muscle vasodilator capacity. Our results suggest that relative improvements in central cardiac function may lead to a reflex release of skeletal muscle vasoconstrictor tone in this disorder.


2011 ◽  
Vol 58 (13) ◽  
pp. 1353-1362 ◽  
Author(s):  
Fabio Esposito ◽  
Van Reese ◽  
Ralph Shabetai ◽  
Peter D. Wagner ◽  
Russell S. Richardson

2017 ◽  
Vol 243 ◽  
pp. 20-26 ◽  
Author(s):  
Joshua R. Smith ◽  
K. Sue Hageman ◽  
Craig A. Harms ◽  
David C. Poole ◽  
Timothy I. Musch

2007 ◽  
Vol 292 (1) ◽  
pp. H580-H592 ◽  
Author(s):  
Jordan D. Miller ◽  
Curtis A. Smith ◽  
Sarah J. Hemauer ◽  
Jerome A. Dempsey

We sought to determine whether the normal inspiratory intrathoracic pressures (PITP) produced during exercise contribute to the blunted cardiac output and locomotor limb blood flow responses observed in chronic heart failure (CHF). Five chronically instrumented dogs exercised on a treadmill at 2.5 mile/h at 5% grade while healthy or after the induction of tachycardia-induced CHF. We observed several key differences in the cardiovascular responses to changes in the inspiratory PITP excursion between health and CHF; namely, 1) removing ∼70% of the normally produced inspiratory PITP excursion during exercise (with 15 cmH2O inspiratory positive pressure ventilation) significantly reduced stroke volume (SV) in healthy animals by 5 ± 2% ( P < 0.05) but significantly increased SV and cardiac output (QTOT) in animals with CHF by 5 ± 1% ( P < 0.05); 2) doubling the magnitude of the inspiratory PITP excursion had no effect on SV or QTOT in healthy animals but significantly reduced steady-state QTOT and SV in animals with CHF by −4 ± 3% and −10 ± 3%, respectively; 3) removing the majority of the normally produced inspiratory PITP excursion had no effect on blood flow distribution in healthy animals but increased hindlimb blood flow (9 ± 3%, P < 0.05) out of proportion to the increases in QTOT; and 4) the only similarity between healthy and CHF animals was that increasing the inspiratory PITP excursion significantly reduced steady-state locomotor limb blood flow by 5 ± 2% and 6 ± 3%, respectively ( P < 0.05 for both). We conclude that 1) the normally produced inspiratory PITP excursions are required for a maximal SV response to submaximal exercise in healthy animals but detrimental to the SV and QTOT responses to submaximal exercise in CHF, 2) the respiratory muscle ergoreflex tonically restrains locomotor limb blood flow during submaximal exercise in CHF, and 3) excessive inspiratory muscle work further compromises cardiac function and blood flow distribution in both health and CHF.


Sign in / Sign up

Export Citation Format

Share Document