respiratory muscle
Recently Published Documents


TOTAL DOCUMENTS

2207
(FIVE YEARS 162)

H-INDEX

72
(FIVE YEARS 0)

2022 ◽  
Vol 65 (5) ◽  
pp. 101596
Author(s):  
Raúl Fabero-Garrido ◽  
Tamara del Corral ◽  
Santiago Angulo-Díaz-Parreño ◽  
Gustavo Plaza-Manzano ◽  
Patricia Martín-Casas ◽  
...  


2022 ◽  
Vol 12 ◽  
Author(s):  
Ren-Jay Shei ◽  
Hunter L. Paris ◽  
Abigail S. Sogard ◽  
Timothy D. Mickleborough

Inspiratory muscle training (IMT) has been studied as a rehabilitation tool and ergogenic aid in clinical, athletic, and healthy populations. This technique aims to improve respiratory muscle strength and endurance, which has been seen to enhance respiratory pressure generation, respiratory muscle weakness, exercise capacity, and quality of life. However, the effects of IMT have been discrepant between populations, with some studies showing improvements with IMT and others not. This may be due to the use of standardized IMT protocols which are uniformly applied to all study participants without considering individual characteristics and training needs. As such, we suggest that research on IMT veer away from a standardized, one-size-fits-all intervention, and instead utilize specific IMT training protocols. In particular, a more personalized approach to an individual’s training prescription based upon goals, needs, and desired outcomes of the patient or athlete. In order for the coach or practitioner to adjust and personalize a given IMT prescription for an individual, factors, such as frequency, duration, and modality will be influenced, thus inevitably affecting overall training load and adaptations for a projected outcome. Therefore, by integrating specific methods based on optimization, periodization, and personalization, further studies may overcome previous discrepancies within IMT research.



2022 ◽  
Vol 12 ◽  
Author(s):  
Antenor Rodrigues ◽  
Luc Janssens ◽  
Daniel Langer ◽  
Umi Matsumura ◽  
Dmitry Rozenberg ◽  
...  

Background: Respiratory muscle electromyography (EMG) can identify whether a muscle is activated, its activation amplitude, and timing. Most studies have focused on the activation amplitude, while differences in timing and duration of activity have been less investigated. Detection of the timing of respiratory muscle activity is typically based on the visual inspection of the EMG signal. This method is time-consuming and prone to subjective interpretation.Aims: Our main objective was to develop and validate a method to assess the respective timing of different respiratory muscle activity in an objective and semi-automated manner.Method: Seven healthy adults performed an inspiratory threshold loading (ITL) test at 50% of their maximum inspiratory pressure until task failure. Surface EMG recordings of the costal diaphragm/intercostals, scalene, parasternal intercostals, and sternocleidomastoid were obtained during ITL. We developed a semi-automated algorithm to detect the onset (EMG, onset) and offset (EMG, offset) of each muscle’s EMG activity breath-by-breath with millisecond accuracy and compared its performance with manual evaluations from two independent assessors. For each muscle, the Intraclass Coefficient correlation (ICC) of the EMG, onset detection was determined between the two assessors and between the algorithm and each assessor. Additionally, we explored muscle differences in the EMG, onset, and EMG, offset timing, and duration of activity throughout the ITL.Results: More than 2000 EMG, onset s were analyzed for algorithm validation. ICCs ranged from 0.75–0.90 between assessor 1 and 2, 0.68–0.96 between assessor 1 and the algorithm, and 0.75–0.91 between assessor 2 and the algorithm (p < 0.01 for all). The lowest ICC was shown for the diaphragm/intercostal and the highest for the parasternal intercostal (0.68 and 0.96, respectively). During ITL, diaphragm/intercostal EMG, onset occurred later during the inspiratory cycle and its activity duration was shorter than the scalene, parasternal intercostal, and sternocleidomastoid (p < 0.01). EMG, offset occurred synchronously across all muscles (p ≥ 0.98). EMG, onset, and EMG, offset timing, and activity duration was consistent throughout the ITL for all muscles (p > 0.63).Conclusion: We developed an algorithm to detect EMG, onset of several respiratory muscles with millisecond accuracy that is time-efficient and validated against manual measures. Compared to the inherent bias of manual measures, the algorithm enhances objectivity and provides a strong standard for determining the respiratory muscle EMG, onset.



2022 ◽  
Vol Volume 15 ◽  
pp. 291-297
Author(s):  
Camelia Pescaru ◽  
Mirela Frandes ◽  
Monica Marc ◽  
Daniel Traila ◽  
Andrei Pescaru ◽  
...  


2021 ◽  
Vol 15 (1) ◽  
pp. 82-87
Author(s):  
Sebastián Lux ◽  
Daniel Ramos ◽  
Andrés Pinto ◽  
Sara Schilling ◽  
Mauricio Salinas

The diaphragm is the most important respiratory muscle, and its function may be limited by acute and chronic diseases. A diaphragmatic ultrasound, which quantifies dysfunction through different approaches, is useful in evaluating work of breathing and diaphragm atrophy, predicting successful weaning, and diagnosing critically ill patients. This technique has been used to determine reduced diaphragmatic function in patients with chronic obstructive pulmonary disease and interstitial diseases, while in those with COVID-19, diaphragmatic ultrasound has been used to predict weaning failure from mechanical ventilation.



Author(s):  
Karina H. Tukanova ◽  
Swathikan Chidambaram ◽  
Nadia Guidozzi ◽  
George B. Hanna ◽  
Alison H. McGregor ◽  
...  

Abstract Background Esophageal and gastric cancer surgery are associated with considerable morbidity, specifically postoperative pulmonary complications (PPCs), potentially accentuated by underlying challenges with malnutrition and cachexia affecting respiratory muscle mass. Physiotherapy regimens aim to increase the respiratory muscle strength and may prevent postoperative morbidity. Objective The aim of this study was to assess the impact of physiotherapy regimens in patients treated with esophagectomy or gastrectomy. Methods An electronic database search was performed in the MEDLINE, EMBASE, CENTRAL, CINAHL and Pedro databases. A meta-analysis was performed to assess the impact of physiotherapy on the functional capacity, incidence of PPCs and postoperative morbidity, in-hospital mortality rate, length of hospital stay (LOS) and health-related quality of life (HRQoL). Results Seven randomized controlled trials (RCTs) and seven cohort studies assessing prehabilitation totaling 960 patients, and five RCTs and five cohort studies assessing peri- or postoperative physiotherapy with 703 total patients, were included. Prehabilitation resulted in a lower incidence of postoperative pneumonia and morbidity (Clavien–Dindo score ≥ II). No difference was observed in functional exercise capacity and in-hospital mortality following prehabilitation. Meanwhile, peri- or postoperative rehabilitation resulted in a lower incidence of pneumonia, shorter LOS, and better HRQoL scores for dyspnea and physical functioning, while no differences were found for the QoL summary score, global health status, fatigue, and pain scores. Conclusion This meta-analysis suggests that implementing an exercise intervention may be beneficial in both the preoperative and peri- or postoperative periods. Further investigation is needed to understand the mechanism through which exercise interventions improve clinical outcomes and which patient subgroup will gain the maximal benefit.



2021 ◽  
Vol 50 (1) ◽  
pp. 11-11
Author(s):  
Connor Wakefield ◽  
Seungjun Kim ◽  
Rachel Geroux ◽  
Christopher Seder ◽  
Palmi Shah ◽  
...  


Author(s):  
Tomoyuki Morisawa ◽  
Yota Kunieda ◽  
Shingo Koyama ◽  
Mizue Suzuki ◽  
Yuma Takahashi ◽  
...  

An association between respiratory muscle weakness and sarcopenia may provide a clue to the mechanism of sarcopenia development. We aimed to clarify this relationship among community-dwelling older adults. In total, 117 community-dwelling older adults were assessed and classified into 4 groups: robust, respiratory muscle weakness, sarcopenia, and respiratory sarcopenia. The respiratory sarcopenia group (12%) had a significantly higher percentage of males and had lower BMI, skeletal muscle index, skeletal muscle mass, phase angle, and oral function than the robust group (32.5%). All physical functions were significantly lower. The respiratory muscle weakness group (54.7%) had a significantly lower BMI and slower walking speed, compared with the robust group. The sarcopenia group (0.8%) was excluded from the analysis. The percent maximum inspiratory pressure was significantly lower in both the respiratory muscle weakness and respiratory sarcopenia groups, compared with the robust group. Almost all participants with sarcopenia showed respiratory muscle weakness. In addition, approximately 50% had respiratory muscle weakness, even in the absence of systemic sarcopenia, suggesting that respiratory muscle weakness may be the precursor of sarcopenia. The values indicating physical function and skeletal muscle mass in the respiratory muscle weakness group were between those in the robust and the respiratory sarcopenia groups.



Sign in / Sign up

Export Citation Format

Share Document