Comparison of the Multipeak and Spectral Peak Speech Coding Strategies of the Nucleus TM 22-Channel Cochlear Implant System

1995 ◽  
Vol 4 (3) ◽  
pp. 49-54 ◽  
Author(s):  
Laura K. Holden ◽  
Margaret W. Skinner ◽  
Timothy A. Holden ◽  
Susan M. Binzer

Eight subjects participated in a comparison of the multipeak (MPEAK) and spectral peak (SPEAK) speech coding strategies of the Nucleus TM 22-channel cochlear implant system as part of a long-term monitoring study. Sound-field threshold levels and speech recognition performance on the Bamford-Kowal-Bench Sentence Test, NU-6 Monosyllabic Word Test, and Connected Speech Test or CID Everyday Sentence Test were analyzed for the two speech coding strategies. For the group, speech recognition performance was significantly higher with the SPEAK speech coding strategy than with the MPEAK strategy on all speech tests. For individual subjects, scores with the SPEAK strategy were significantly higher for some subjects on each of the speech tests. None of the subjects scored significantly higher on any of the tests with MPEAK.

1999 ◽  
Vol 20 (6) ◽  
pp. 443-460 ◽  
Author(s):  
Margaret W. Skinner ◽  
Marios S. Fourakis ◽  
Timothy A. Holden ◽  
Laura K. Holden ◽  
Marilyn E. Demorest

1996 ◽  
Vol 17 (3) ◽  
pp. 182-197 ◽  
Author(s):  
Margaret W. Skinner ◽  
Marios S. Fourakis ◽  
Timothy A. Holden ◽  
Laura K. Holden ◽  
Marilyn E. Demorest

2021 ◽  
pp. 1-11
Author(s):  
Stefanie Bruschke ◽  
Uwe Baumann ◽  
Timo Stöver

Background: The cochlear implant (CI) is a standard procedure for the treatment of patients with severe to profound hearing loss. In the past, a standard healing period of 3–6 weeks occurred after CI surgery before the sound processor was initially activated. Advancements of surgical techniques and instruments allow an earlier initial activation of the processor within 14 days after surgery. Objective: Evaluation of the early CI device activation after CI surgery within 14 days, comparison to the first activation after 4–6 weeks, and assessment of the feasibility and safety of the early fitting over a 12 month observation period were the objectives of this study. Method: In a prospective study, 127 patients scheduled for CI surgery were divided into early fitting group (EF, n = 67) and control group (CG, n = 60). Individual questionnaires were used to evaluate medical and technical outcomes of the EF. Medical side effects, speech recognition, and follow-up effort were compared with the CG within the first year after CI surgery. Results: The early fitting was feasible in 97% of the EF patients. In the EF, the processor was activated 25 days earlier than in the CG. No major complications were observed in either group. At the follow-up appointments, side effects such as pain and balance problems occurred with comparable frequency in both groups. At initial fitting, the EF showed a significantly higher incidence of medical minor complications (p < 0.05). When developing speech recognition within the first year of CI use, no difference was observed. Furthermore, the follow-up effort within the first year after CI surgery was comparable in both groups. Conclusions: Early fitting of the sound processor is a feasible and safe procedure with comparable follow-up effort. Although more early minor complications were observed in the EF, there were no long-term wound healing problems caused by the early fitting. Regular inspection of the magnet strength is recommended as part of the CI follow-up since postoperative wound swelling must be expected. The early fitting procedure enabled a clear reduction in the waiting time between CI surgery and initial sound processor activation.


2008 ◽  
Vol 19 (02) ◽  
pp. 120-134 ◽  
Author(s):  
Kate Gfeller ◽  
Jacob Oleson ◽  
John F. Knutson ◽  
Patrick Breheny ◽  
Virginia Driscoll ◽  
...  

The research examined whether performance by adult cochlear implant recipients on a variety of recognition and appraisal tests derived from real-world music could be predicted from technological, demographic, and life experience variables, as well as speech recognition scores. A representative sample of 209 adults implanted between 1985 and 2006 participated. Using multiple linear regression models and generalized linear mixed models, sets of optimal predictor variables were selected that effectively predicted performance on a test battery that assessed different aspects of music listening. These analyses established the importance of distinguishing between the accuracy of music perception and the appraisal of musical stimuli when using music listening as an index of implant success. Importantly, neither device type nor processing strategy predicted music perception or music appraisal. Speech recognition performance was not a strong predictor of music perception, and primarily predicted music perception when the test stimuli included lyrics. Additionally, limitations in the utility of speech perception in predicting musical perception and appraisal underscore the utility of music perception as an alternative outcome measure for evaluating implant outcomes. Music listening background, residual hearing (i.e., hearing aid use), cognitive factors, and some demographic factors predicted several indices of perceptual accuracy or appraisal of music. La investigación examinó si el desempeño, por parte de adultos receptores de un implante coclear, sobre una variedad de pruebas de reconocimiento y evaluación derivadas de la música del mundo real, podrían predecirse a partir de variables tecnológicas, demográficas y de experiencias de vida, así como de puntajes de reconocimiento del lenguaje. Participó una muestra representativa de 209 adultos implantados entre 1965 y el 2006. Usando múltiples modelos de regresión lineal y modelos mixtos lineales generalizados, se seleccionaron grupos de variables óptimas de predicción, que pudieran predecir efectivamente el desempeño por medio de una batería de pruebas que permitiera evaluar diferentes aspectos de la apreciación musical. Estos análisis establecieron la importancia de distinguir entre la exactitud en la percepción musical y la evaluación de estímulos musicales cuando se utiliza la apreciación musical como un índice de éxito en la implantación. Importantemente, ningún tipo de dispositivo o estrategia de procesamiento predijo la percepción o la evaluación musical. El desempeño en el reconocimiento del lenguaje no fue un elemento fuerte de predicción, y llegó a predecir primariamente la percepción musical cuando los estímulos de prueba incluyeron las letras. Adicionalmente, las limitaciones en la utilidad de la percepción del lenguaje a la hora de predecir la percepción y la evaluación musical, subrayan la utilidad de la percepción de la música como una medida alternativa de resultado para evaluar la implantación coclear. La música de fondo, la audición residual (p.e., el uso de auxiliares auditivos), los factores cognitivos, y algunos factores demográficos predijeron varios índices de exactitud y evaluación perceptual de la música.


2005 ◽  
Vol 69 (12) ◽  
pp. 1667-1674 ◽  
Author(s):  
Manuel Manrique ◽  
Alicia Huarte ◽  
Constantino Morera ◽  
Laura Caballé ◽  
Angel Ramos ◽  
...  

Author(s):  
Gillian Robyn Kerr ◽  
Seppo Tuomi ◽  
Alida Müller

Cochlear implantation is an expensive but effective lifelong intervention for individuals with a severe-to-profound hearing loss. The primary aim of this study was to survey the short- and long-term costs of cochlear implantation. Individuals (N=154) using cochlear implants obtained from the University of Stellenbosch-Tygerberg Hospital Cochlear Implant Unit in Cape Town, South Africa were surveyed using a questionnaire and patient record review. The questionnaire used a combination of closed and open-ended questions to gather both quantitative and qualitative information. Costs were categorised as short- and long-term costs. All costs were converted to constant rands (June 2010) using the Consumer Price Index to allow for comparison in real terms over time. In the first 10 years of implantation the average estimated costs incurred by adults totalled R379 626, and by children R455 225. The initial purchase of the implant system was the most substantial cost, followed by upgrading of the processor. Travel and accommodation costs peaked in the first 2 years. On average the participants spent R2 550 per year on batteries and spares. Rehabilitation for children cost an average of R7 200. Insurance costs averaged R4 040 per year, and processor repairs R3 000 each. In addition to the upfront expense of obtaining the cochlear implant system, individuals using a cochlear implant in South Africa should be prepared for the long-term costs of maintenance, accessing the unit, support services and additional costs associated with use. Knowledge of these costs is important to ensure that individuals are successful users of their cochlear implants in the long term.


2010 ◽  
Vol 21 (07) ◽  
pp. 441-451 ◽  
Author(s):  
René H. Gifford ◽  
Lawrence J. Revit

Background: Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. Purpose: To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE™) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Research Design: Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Study Sample: Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Intervention: Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam™ preprocessing (Cochlear Corporation) or the T-Mic® accessory option (Advanced Bionics). Data Collection and Analysis: In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested “Everyday,” “Noise,” and “Focus” preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. Results: The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Conclusion: Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments.


Sign in / Sign up

Export Citation Format

Share Document