First report of the pitch canker fungus, Fusarium circinatum , on pines in Chile

2002 ◽  
Vol 51 (3) ◽  
pp. 397-397 ◽  
Author(s):  
M. J. Wingfield ◽  
A. Jacobs ◽  
T. A. Coutinho ◽  
R. Ahumada ◽  
B. D. Wingfield
2007 ◽  
Vol 8 (1) ◽  
pp. 55 ◽  
Author(s):  
M. Garbelotto ◽  
W. Schweigkofler ◽  
D. Shaw

A rapid decline of Aleppo pines was observed in the parking lot of the Legoland amusement park in San Diego Co., CA. Although Aleppo pine is a known host for Fusarium circinatum, this is the first report describing resin-soaked sapwood lesions in the roots of mature trees. Previous reports on root infections regarded seedlings. The infestation in this location may have begun with infected roots in planted saplings. The persistent infestation at Legoland represents a significant source of inoculum for this pathogen exotic to California. Accepted for publication 7 June 2006. Published 19 February 2007.


2014 ◽  
Vol 39 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Ludwig H. Pfenning ◽  
Sarah da Silva Costa ◽  
Maruzanete Pereira de Melo ◽  
Hélcio Costa ◽  
José Aires Ventura ◽  
...  

Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1079-1079 ◽  
Author(s):  
H. Bragança ◽  
E. Diogo ◽  
F. Moniz ◽  
P. Amaro

In November of 2007, dieback symptoms (basal needle dieback, wilting, and dieback of terminal shoot) were observed on plant groups of Pinus radiata and P. pinaster in a tree nursery located in Anadia in the central region of Portugal (40°26′N, 08°23′W). Two containers with a total of 112 plants per pine species (with and without symptoms) were collected. Small pieces (5 mm long; two from the roots, stem at the soil level, and the aerial part, totaling six pieces) of 20 symptomatic plants were sterilized with 3% sodium hypochlorite, and isolations were performed on potato dextrose agar (PDA) supplemented with 0.5 mg/ml of streptomycin sulfate. A species of Fusarium was isolated from all infected tissues and pure cultures were obtained by single hyphal tip transfers on PDA and Spezieller Nährstoffarmer agar and incubated at 25°C for 10 days with a 12-h photoperiod. The species was identified as Fusarium circinatum Nirenberg & O'Donnell (= F. subglutinans Wollenweb & Reinking) on the basis of morphological and cultural characteristics (2). They produced white, aerial mycelia, violet pigment, typically three-septate macroconidia with slightly curved walls, single-celled microconidia, and characteristic sterile, coiled hyphae. Microconidia were ovoid or allantoid and born in false heads on aerial polyphialides. The identification was confirmed by PCR with specific primers CIRC1A/CIRC4A, resulting in a 360-bp DNA fragment of the two nuclear ribosomal intergenic spacer regions (3). Pathogenicity tests were performed by inoculating 5- and 9-month-old P. pinaster and P. radiata seedlings, respectively. Plants belonging to P. pinea species (8-month-old), the second most important pine in the country, were also included in the tests. Small strips of bark (10 × 1 mm) were cut from the stems and similar-sized pieces of PDA colonized by two isolates of F. circinatum were placed in contact with the open wounds and covered with Parafilm. Ten seedlings for each pine species, isolate, and control (with sterile PDA) were provided in a total of 90 plants. First symptoms, basal needle and shoot dieback, were observed in P. radiata 8 days after inoculation. One month later, all P. radiata and 70% of the P. pinaster plants were dead. In all P. pinea plants, needles turned red along the main stem, from center to periphery, but only 2% of these plants presented wilting of the terminal shoot after 1 month. No symptoms were observed on control seedlings. F. circinatum was reisolated from symptomatic plants of the three species tested. To our knowledge, this is the first report of F. circinatum in Portugal. Pitch canker, caused by Gibberella circinata (anamorph F. circinatum), is one of the most aggressive pathogens on several pine species in the world (1). In 2005, the fungus was detected in the European continent affecting P. radiata and P. pinaster in northern Spain. References: (1) E. Landeras et al. Plant Dis. 89:1015, 2005. (2) H. I. Niremberg and K. O'Donnell. Mycologia 90:434, 1998. (3) W. Schweigkofler et al. Appl. Environ. Microbiol. 70:3512, 2004.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 560 ◽  
Author(s):  
Kateryna Davydenko ◽  
Justyna Nowakowska ◽  
Tomasz Kaluski ◽  
Magdalena Gawlak ◽  
Katarzyna Sadowska ◽  
...  

The fungal pathogen Fusarium circinatum is the causal agent of Pine Pitch Canker (PPC), a disease which seriously affects different species of pine in forests and nurseries worldwide. In Europe, the fungus affects pines in northern Spain and Portugal, and it has also been detected in France and Italy. Here, we report the findings of the first trial investigating the susceptibility of Polish provenances of Scots pine, Pinus sylvestris L., to infection by F. circinatum. In a greenhouse experiment, 16 Polish provenances of Scots pine were artificially inoculated with F. circinatum and with six other Fusarium species known to infect pine seedlings in nurseries. All pines proved highly susceptible to PPC and displayed different levels of susceptibility to the other Fusarium spp. tested. The findings obtained indicate the potentially strong threat of establishment of an invasive pathogen such as F. circinatum following unintentional introduction into Poland.


2002 ◽  
Vol 2 (4) ◽  
pp. 577-580 ◽  
Author(s):  
H. Britz ◽  
B. D. Wingfield ◽  
T. A. Coutinho ◽  
M. J. Wingfield

Plant Disease ◽  
2005 ◽  
Vol 89 (9) ◽  
pp. 1015-1015 ◽  
Author(s):  
E. Landeras ◽  
P. García ◽  
Y. Fernández ◽  
M. Braña ◽  
O. Fernández-Alonso ◽  
...  

During the winter of 2003-2004, dieback symptoms were observed on Pinus radiata and P. pinaster in pine nurseries in Asturias (northern Spain). Small groups of affected seedlings appeared randomly distributed throughout the nurseries. The seedlings died rapidly, showing basal needle dieback, stem lesions, resin exudations, and wilting. Isolations from infected material onto potato dextrose agar (PDA) supplemented with 0.5 mg/ml of streptomycin sulfate and Komada's medium consistently yielded Fusarium sp. cultures. The isolates were transferred to PDA and Spezieller Nährstoffarmer agar and incubated at 25°C for 10 days with a 12-h photoperiod. The cultures were identified as Fusarium circinatum Nirenberg & O'Donnell (= Fusarium subglutinans Wollenweb. & Reinking), causal agent of pitch canker disease, on basis of the presence of polyphialides and characteristic sterile, coiled, hyphae (2). To further confirm their identity, a polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) based on histone H3 gene sequences (4) and a test based on the F. circinatum-specific primers, CIRC1A-CIRC4A, which amplifies a 360-bp DNA fragment of the intergenic spacer region of the nuclear ribosomal operon (3), were used. Results obtained with both techniques confirmed the morphological identification of the cultures. A representative culture has been placed in the Centraalbureau voor Schimmelcultures (CBS 117843). The pathogen was isolated only from seedlings of P. radiata and P. pinaster. Other species such as P. nigra, P. sylvestris, and Pseudotsuga menziesii, which were also grown in these nurseries, did not show symptoms. Pathogenicity was confirmed by inoculating 6- to 9-month-old P. radiata and P. pinaster seedlings. Small strips of bark (10 × 1 mm) were cut from the stems and similar sized pieces of PDA colonized by F. circinatum were placed in contact with the open wounds and covered with parafilm. Basal needle dieback was observed 10 days after inoculation that resulted in wilting of the seedlings. F. circinatum was reisolated from the affected stems fulfilling Koch's postulates. Later in the year, symptoms of pitch canker were also observed on 20-year-old P. radiata in one forest plantation in Cantabria (northern Spain). Infected branches and shoots of the trees exudated abundant resin, resulting in resinous cankers. The needles, distal to branch tip infections, wilt, fade to yellow then red, and fall from the tree. Affected trees showed noticeable crown dieback. The isolations from the cankers also yielded F. circinatum cultures that were identified as described above. Although a nonrefereed report appeared in 1998 (1), to our knowledge, this is the first report of F. circinatum on P. radiata and P. pinaster in Spain and in Europe. References: (1) L. D. Dwinell et al. Int. Congr. Plant Pathol. 7th. 3:9, 1998. (2) H. I. Nirenberg and K. O'Donnell. Mycologia 90:434, 1998. (3) W. Schweigkofler et al. Appl. Environ. Microbiol. 70:3512, 2004. (4) E. T. Steenkamp et al. Appl. Environ. Microbiol. 65:3401, 1999.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1158 ◽  
Author(s):  
Cristina Zamora-Ballesteros ◽  
Julio J. Diez ◽  
Jorge Martín-García ◽  
Johanna Witzell ◽  
Alejandro Solla ◽  
...  

Fusarium circinatum (Nirenberg and O’ Donnell) is the causal agent of pine pitch canker (PPC) disease, one of the most devastating forest diseases worldwide. Long-distance spread occurs mainly through the movement of infected seeds whereas at regional level, the movement of seedlings, substrates, or containers may play an important role in fungal dispersal. Invasion of nurseries takes place via infected seeds and further spread can occur by planting contaminated seedlings, especially due to the possibility of infected plants remaining symptomless. Once established, F. circinatum spreads by rain, wind, and insects. The natural spread of the pathogen is limited due to the short dispersal distances of the spores and the fairly short flight distances of disseminating insects. In this review, we summarize the currently known dispersal pathways of the pathogen, discussing both natural and human-assisted processes. With the purpose of understanding how to best intervene in the disease’s development in nurseries and forests, we outline the epidemiology of the pathogen describing the key factors influencing its spread. Preventive measures to control the spread of F. circinatum locally and globally are described with special emphasis on the challenges in implementing them.


2018 ◽  
Vol 32 ◽  
pp. 65-71 ◽  
Author(s):  
L. Hernandez-Escribano ◽  
E. Iturritxa ◽  
M. Elvira-Recuenco ◽  
M. Berbegal ◽  
J.A. Campos ◽  
...  

2016 ◽  
Vol 36 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Diana Bezos ◽  
Pablo Martínez-Álvarez ◽  
Julio J. Diez ◽  
Mercedes Fernández

Sign in / Sign up

Export Citation Format

Share Document