Parental Care and Sexual Selection in the Bluethroat, Luscinia s. svecica: A Field-experimental Test of the Differential Allocation Hypothesis

Ethology ◽  
1999 ◽  
Vol 105 (8) ◽  
pp. 651-663 ◽  
Author(s):  
Percy A. Rohde ◽  
Arild Johnsen ◽  
Jan T. Lifjeld
2009 ◽  
Vol 22 (4) ◽  
pp. 672-682 ◽  
Author(s):  
V. A. OLSON ◽  
T. J. WEBB ◽  
R. P. FRECKLETON ◽  
T. SZÉKELY

2011 ◽  
Vol 279 (1734) ◽  
pp. 1784-1790 ◽  
Author(s):  
Suzanne H. Alonzo

Explaining the evolution of male care has proved difficult. Recent theory predicts that female promiscuity and sexual selection on males inherently disfavour male care. In sharp contrast to these expectations, male-only care is often found in species with high extra-pair paternity and striking variation in mating success, where current theory predicts female-only care. Using a model that examines the coevolution of male care, female care and female choice; I show that inter-sexual selection can drive the evolution of male care when females are able to bias mating or paternity towards parental males. Surprisingly, female choice for parental males allows male care to evolve despite low relatedness between the male and the offspring in his care. These results imply that predicting how sexual selection affects parental care evolution will require further understanding of why females, in many species, either do not prefer or cannot favour males that provide care.


2008 ◽  
pp. 377-409 ◽  
Author(s):  
Kai Lindström ◽  
Colette Mary

Evolution ◽  
2008 ◽  
Vol 62 (8) ◽  
pp. 2015-2026 ◽  
Author(s):  
Alejandro Gonzalez-Voyer ◽  
John L. Fitzpatrick ◽  
Niclas Kolm

2007 ◽  
Vol 274 (1617) ◽  
pp. 1553-1560 ◽  
Author(s):  
O Krüger ◽  
N.B Davies ◽  
M.D Sorenson

Sexual dimorphism is ubiquitous in animals and can result from selection pressure on one or both sexes. Sexual selection has become the predominant explanation for the evolution of sexual dimorphism, with strong selection on size-related mating success in males being the most common situation. The cuckoos (family Cuculidae) provide an exceptional case in which both sexes of many species are freed from the burden of parental care but where coevolution between parasitic cuckoos and their hosts also results in intense selection. Here, we show that size and plumage differences between the sexes in parasitic cuckoos are more likely the result of coevolution than sexual selection. While both sexes changed in size as brood parasitism evolved, we find no evidence for selection on males to become larger. Rather, our analysis indicates stronger selection on parasitic females to become smaller, resulting in a shift from dimorphism with larger females in cuckoos with parental care to dimorphism with larger males in parasitic species. In addition, the evolution of brood parasitism was associated with more cryptic plumage in both sexes, but especially in females, a result that contrasts with the strong plumage dimorphism seen in some other parasitic birds. Examination of the three independent origins of brood parasitism suggests that different parasitic cuckoo lineages followed divergent evolutionary pathways to successful brood parasitism. These results argue for the powerful role of parasite–host coevolution in shaping cuckoo life histories in general and sexual dimorphism in particular.


2012 ◽  
Vol 367 (1586) ◽  
pp. 211-221 ◽  
Author(s):  
Jussi Lehtonen ◽  
Hanna Kokko

A large proportion of studies in systems science focus on processes involving a mixture of positive and negative feedbacks, which are also common themes in evolutionary ecology. Examples of negative feedback are density dependence (population regulation) and frequency-dependent selection (polymorphisms). Positive feedback, in turn, plays a role in Fisherian ‘runaway’ sexual selection, the evolution of cooperation, selfing and inbreeding tolerance under purging of deleterious alleles, and the evolution of sex differences in parental care. All these examples feature self-reinforcing processes where the increase in the value of a trait selects for further increases, sometimes via a coevolutionary feedback loop with another trait. Positive feedback often leads to alternative stable states (evolutionary endpoints), making the interpretation of evolutionary predictions challenging. Here, we discuss conceptual issues such as the relationship between self-reinforcing selection and disruptive selection. We also present an extension of a previous model on parental care, focusing on the relationship between the operational sex ratio and sexual selection, and the influence of this relationship on the evolution of biparental or uniparental care.


2016 ◽  
Vol 3 (10) ◽  
pp. 160463 ◽  
Author(s):  
Wolfgang Goymann ◽  
Ignas Safari ◽  
Christina Muck ◽  
Ingrid Schwabl

The decision to provide parental care is often associated with trade-offs, because resources allocated to parental care typically cannot be invested in self-maintenance or mating. In most animals, females provide more parental care than males, but the reason for this pattern is still debated in evolutionary ecology. To better understand sex differences in parental care and its consequences, we need to study closely related species where the sexes differ in offspring care. We investigated parental care in relation to offspring growth in two closely related coucal species that fundamentally differ in sex roles and parental care, but live in the same food-rich habitat with a benign climate and have a similar breeding phenology. Incubation patterns differed and uniparental male black coucals fed their offspring two times more often than female and male white-browed coucals combined. Also, white-browed coucals had more ‘off-times’ than male black coucals, during which they perched and preened. However, these differences in parental care were not reflected in offspring growth, probably because white-browed coucals fed their nestlings a larger proportion of frogs than insects. A food-rich habitat with a benign climate may be a necessary, but—perhaps unsurprisingly—is not a sufficient factor for the evolution of uniparental care. In combination with previous results (Goymann et al . 2015 J. Evol. Biol . 28 , 1335–1353 ( doi:10.1111/jeb.12657 )), these data suggest that white-browed coucals may cooperate in parental care, because they lack opportunities to become polygamous rather than because both parents were needed to successfully raise all offspring. Our case study supports recent theory suggesting that permissive environmental conditions in combination with a particular life history may induce sexual selection in females. A positive feedback loop among sexual selection, body size and adult sex-ratio may then stabilize reversed sex roles in competition and parental care.


2012 ◽  
Vol 58 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Ashley R. Robart

Abstract The differential allocation hypothesis predicts individuals will increase their reproductive investment when mated to a high quality partner. In many species of fish with biparental care females prefer large males due to the males’ greater ability to raise more offspring to independence. I examined the relationship between mate quality, parental care and number of offspring in a natural population of convict cichlids Amatitlania siquia. The frequency of frontal displays by females was positively correlated with male standard length. Additionally, as males increased in length relative to their mate, females increased the frequency of chases towards predators, while males decreased the number of displays towards brood predators. This trade-off in parental effort within a pair due to mate quality is a key prediction of differential allocation. The number of offspring was correlated with male, but not female, standard length. These results support the differential allocation hypothesis in that females offered more parental care to offspring of a larger male, while their mates decreased the amount of care they provided. Additionally, females benefited in terms of number of offspring by pairing with higher quality mates. Increased female investment may provide an incentive to ensure male care and maintain pair bonding, which could lead to greater reproductive success through increased offspring survival.


Sign in / Sign up

Export Citation Format

Share Document