Prior short-term synaptic disinhibition facilitates long-term potentiation and suppresses long-term depression at CA1 hippocampal synapses

1999 ◽  
Vol 11 (11) ◽  
pp. 4059-4069 ◽  
Author(s):  
Kuei-Sen Hsu ◽  
Wen-Chia Ho ◽  
Chiung-Chun Huang ◽  
Jing-Jane Tsai
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Efrat Shavit-Stein ◽  
Amir Dori ◽  
Marina Ben Shimon ◽  
Shany Guly Gofrit ◽  
Nicola Maggio

The cholinergic system plays a fundamental role in learning and memory. Pharmacological activation of the muscarinic receptor M1R potentiates NMDA receptor activity and induces short-term potentiation at the synapses called muscarinic LTP, mLTP. Dysfunction of cholinergic transmission has been detected in the settings of cognitive impairment and dementia. Systemic inflammation as well as neuroinflammation has been shown to profoundly alter synaptic transmission and LTP. Indeed, intervention which is aimed at reducing neuroinflammatory changes in the brain has been associated with an improvement in cognitive functions. While cognitive impairment caused either by cholinergic dysfunction and/or by systemic inflammation suggests a possible connection between the two, so far whether systemic inflammation affects mLTP has not been extensively studied. In the present work, we explored whether an acute versus persistent systemic inflammation induced by LPS injections would differently affect the ability of hippocampal synapses to undergo mLTP. Interestingly, while a short exposure to LPS resulted in a transient deficit in mLTP expression, a longer exposure persistently impaired mLTP. We believe that these findings may be involved in cognitive dysfunctions following sepsis and possibly neuroinflammatory processes.


2019 ◽  
Author(s):  
Benjamin Compans ◽  
Magalie Martineau ◽  
Remco V. Klaassen ◽  
Thomas M. Bartol ◽  
Corey Butler ◽  
...  

Long-Term Potentiation (LTP) and Long-Term Depression (LTD) of excitatory synaptic transmission are considered as cellular basis of learning and memory. These two forms of synaptic plasticity have been mainly attributed to global changes in the number of synaptic AMPA-type glutamate receptor (AMPAR) through a regulation of the diffusion/trapping balance at the PSD, exocytosis and endocytosis. While the precise molecular mechanisms at the base of LTP have been intensively investigated, the ones involved in LTD remains elusive. Here we combined super-resolution imaging technique, electrophysiology and modeling to describe the various modifications of AMPAR nanoscale organization and their effect on synaptic transmission in response to two different LTD protocols, based on the activation of either NMDA receptors or P2X receptors. While both type of LTD are associated with a decrease in synaptic AMPAR clustering, only NMDAR-dependent LTD is associated with a reorganization of PSD-95 at the nanoscale. This change increases the pool of diffusive AMPAR improving synaptic short-term facilitation through a post-synaptic mechanism. These results demonstrate that specific dynamic reorganization of synapses at the nanoscale during specific LTD paradigm allows to improve the responsiveness of depressed synapses.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mingxue Ma ◽  
Yao Ni ◽  
Zirong Chi ◽  
Wanqing Meng ◽  
Haiyang Yu ◽  
...  

AbstractThe ability to emulate multiplexed neurochemical transmission is an important step toward mimicking complex brain activities. Glutamate and dopamine are neurotransmitters that regulate thinking and impulse signals independently or synergistically. However, emulation of such simultaneous neurotransmission is still challenging. Here we report design and fabrication of synaptic transistor that emulates multiplexed neurochemical transmission of glutamate and dopamine. The device can perform glutamate-induced long-term potentiation, dopamine-induced short-term potentiation, or co-release-induced depression under particular stimulus patterns. More importantly, a balanced ternary system that uses our ambipolar synaptic device backtrack input ‘true’, ‘false’ and ‘unknown’ logic signals; this process is more similar to the information processing in human brains than a traditional binary neural network. This work provides new insight for neuromorphic systems to establish new principles to reproduce the complexity of a mammalian central nervous system from simple basic units.


Sign in / Sign up

Export Citation Format

Share Document