A distributed iterative self-positioning algorithm for wireless sensor networks

Author(s):  
P. Duffy ◽  
M.F. Flanagan
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaogang Qi ◽  
Xiaoke Liu ◽  
Lifang Liu

Wireless sensor networks (WSNs) are widely used in various fields to monitor and track various targets by gathering information, such as vehicle tracking and environment and health monitoring. The information gathered by the sensor nodes becomes meaningful only if it is known where it was collected from. Considering that multilateral algorithm and MDS algorithm can locate the position of each node, we proposed a localization algorithm combining the merits of these two approaches, which is called MA-MDS, to reduce the accumulation of errors in the process of multilateral positioning algorithm and improve the nodes’ positioning accuracy in WSNs. It works in more robust fashion for noise sparse networks, even with less number of anchor nodes. In the MDS positioning phase of this algorithm, the Prussian Analysis algorithm is used to obtain more accurate coordinate transformation. Through extensive simulations and the repeatable experiments under diverse representative networks, it can be confirmed that the proposed algorithm is more accurate and more efficient than the state-of-the-art algorithms.


2014 ◽  
Vol 668-669 ◽  
pp. 1194-1197 ◽  
Author(s):  
Yan Feng ◽  
Bo Yi

The three-dimensional positioning algorithm has become a hot research direction in wireless sensor networks localization algorithms, however the existing 3D positioning algorithms have general shortcomings, such as high complexity, low positioning accuracy, great energy consumption. Aiming at the existing problems of 3D localization algorithm, we propose an decentralized 3D positioning algorithm based on RSSI ranging and free ranging mechanism. The algorithm firstly use measured RSSI to establish beacon node neighborhood. Then the method adopts regional division to obtain initial location information for unknown nodes. Finally, the method use the iterative optimization process to achieve a position information updates. Simulation results demonstrate that proposed algorithm is feasible and has better localization accuracy.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3719 ◽  
Author(s):  
Ala’ Khalifeh ◽  
Husam Abid ◽  
Khalid A. Darabkh

Wireless sensor networks (WSNs) are increasingly gaining popularity, especially with the advent of many artificial intelligence (AI) driven applications and expert systems. Such applications require specific relevant sensors’ data to be stored, processed, analyzed, and input to the expert systems. Obviously, sensor nodes (SNs) have limited energy and computation capabilities and are normally deployed remotely over an area of interest (AoI). Therefore, proposing efficient protocols for sensing and sending data is paramount to WSNs operation. Nodes’ clustering is a widely used technique in WSNs, where the sensor nodes are grouped into clusters. Each cluster has a cluster head (CH) that is used to gather captured data of sensor nodes and forward it to a remote sink node for further processing and decision-making. In this paper, an optimization algorithm for adjusting the CH location with respect to the nodes within the cluster is proposed. This algorithm aims at finding the optimal CH location that minimizes the total sum of the nodes’ path-loss incurred within the intra-cluster communication links between the sensor nodes and the CH. Once the optimal CH is identified, the CH moves to the optimal location. This suggestion of CH re-positioning is frequently repeated for new geometric position. Excitingly, the algorithm is extended to consider the inter-cluster communication between CH nodes belonging to different clusters and distributed over a spiral trajectory. These CH nodes form a multi-hop communication link that convey the captured data of the clusters’ nodes to the sink destination node. The performance of the proposed CH positioning algorithm for the single and multi-clusters has been evaluated and compared with other related studies. The results showed the effectiveness of the proposed CH positioning algorithm.


Sign in / Sign up

Export Citation Format

Share Document