2015 ◽  
Vol 764-765 ◽  
pp. 1407-1411
Author(s):  
Chang Huang Chen

A multi-strategy based population optimization, referred to MSPO, is proposed in this paper. The algorithm is developed by hybridizing four different population-based algorithms, bare bone particle swarm optimization, quantum-behaved particle swarm optimization, differential evolution and opposition-based learning. It aims at enhancing the exploration and exploitation capability of population based algorithm for general optimization problem. These four options are randomly selected with equal probability during the search process. The proposed algorithm is validated against test functions and then compares its performance with those of particle swarm optimization and bare bone particle swarm optimization. Numerical results show that the performance is increased greatly both in solution quality and convergent speed.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4480
Author(s):  
Qun Niu ◽  
Han Wang ◽  
Ziyuan Sun ◽  
Zhile Yang

Solar energy has many advantages, such as being abundant, clean and environmentally friendly. Solar power generation has been widely deployed worldwide as an important form of renewable energy. The solar thermal power generation is one of a few popular forms to utilize solar energy, yet its modelling is a complicated problem. In this paper, an improved bare bone multi-objective particle swarm optimization algorithm (IBBMOPSO) is proposed based on the bare bone multi-objective particle swarm optimization algorithm (BBMOPSO). The algorithm is first tested on a set of benchmark problems, confirming its efficacy and the convergency speed. Then, it is applied to optimize two typical solar power generation systems including the solar Stirling power generation and the solar Brayton power generation; the results show that the proposed algorithm outperforms other algorithms for multi-objective optimization problems.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document