The impact of distributed generation on the Italian distribution network: upgrading of regulatory and technical rules in order to guarantee and improve reliability and efficiency of the electrical system

Author(s):  
F. Cazzato ◽  
D. Di Martino ◽  
M. Di Clerico ◽  
G. Caneponi ◽  
F. Marmeggi
2013 ◽  
Vol 732-733 ◽  
pp. 936-940
Author(s):  
Si Qing Sheng ◽  
Lin Tao Fan ◽  
Xiao Lin Tan

From the angle of voltage distribution, the influence of DG on power network was studied, various access position and access capacity of DG were analyzed, and conclusion can be drew that DG can help optimize the voltage distribution in the power network. Besides, the output of photovoltaic and wind power was characterized by varying with time, and based on that, the voltage distribution was simulated when they were both connected in the same distribution network. According to the simulation result, some valuable principles and necessary procedures have been proposed.


2017 ◽  
Vol 2017 (13) ◽  
pp. 907-910
Author(s):  
Wang Qian ◽  
Lu Jun ◽  
Duan Jiandong ◽  
Tan Wangjing

2017 ◽  
Vol 41 (6) ◽  
pp. 383-396 ◽  
Author(s):  
Naser El Naily ◽  
Saad M Saad ◽  
Zakariya Rajab ◽  
Faisal Mohamed

Although integration of wind distributed generation directly into the distribution level has considerable advantages, increased penetration of wind distributed generation (renewable distributed generation) alters the network configuration and jeopardizes the protection system operation and system stability; for this reason, necessary changes in power system protection philosophy must be achieved. Modern numerical relays offer extraordinary features and fast and accurate methods for spotting and detecting different unbalanced operating conditions and can be used to mitigate the influence of integrating wind distributed generation into distribution network. In this study, an adaptive directional negative protective scheme was implemented in the medium-level distribution network to investigate and evaluate the performance of protection system and introduce new adaptive protective scheme based on negative overcurrent protection to increase the selectivity and sensitivity of the protection system in case of unbalanced faulty conditions. The medium-level distribution network of Libya Eastern electric network had been implemented in ETAP software to address and evaluate the efficiency of the proposed approach.


2014 ◽  
Vol 51 (4) ◽  
pp. 292-305 ◽  
Author(s):  
Saša Stojković ◽  
Miroslav Bjekić ◽  
ŽArko Janda

This work presents the use of the modern software tool Alternative Transients Program (ATP) in the teaching of power engineering, within the course Computer Aided Engineering. A simulation model is presented through which it is possible to analyse the effects of distributed generators (DG) on the operation of a distribution network in both a steady and a transient state, with the objective of fulfilling the conditions for connection. This problem was selected not only because it allows students to gain proper insight into the phenomena within a distribution network with a connected distributed generator, but also because it has been shown that the problem of educating engineers is often a constraining factor for implementing distributed generation (DG). It is shown that by using the software tool ATP-EMTP, very complex phenomena in large networks can be studied without great difficulty or the need for analytical methods. The problem-based learning (PBL) method was applied.


As an effective supplement to the centralized fossil fuel based traditional generation, Distributed Generation (DG) has become an effective alternative choice and has been rapidly increasing since past few years due to growing demand for electricity and the new policies of governing bodies for usage of green energy. In overall power system, distribution systems are more vulnerable to faults and reliability aspects of such systems becomes an important issue. With higher penetration of DG into the distribution network, it will be necessary to study the impact of such generation on the various aspects of distribution system. Thus, increase in rate of penetration DGs into the distribution system on one side and increased faults in distribution network on another side, will make the study of impact of DG integration on distribution system reliability an interesting topic of research. The present work focuses on evaluation of impacts of integration of such DGs on reliability of local distribution network, typically in an urban scenario By using the simulation method using DIgSILENT PowerFactory software, the impacts of integration of DG in terms of enhancement in distribution system reliability indices and reduction in system losses for different scenarios are studied and presented in this paper. Based on the simulation results obtained and after analysis of the distribution system, overall results are summarized by focusing on the installation of suitable capacity of DG and the location of DG which are important factors affecting the system losses and system reliability indices.


2012 ◽  
Vol 433-440 ◽  
pp. 5924-5929 ◽  
Author(s):  
Jie Dong ◽  
Ya Jun Rong ◽  
Chun Jiang Zhang

With the connection of distributed generation (DG), structure of traditional distribution network changes and original relay protection scheme should be adjusted. On the basis of introducing the concept and advantages of distributed generation, this paper discusses the influence of distributed generation with different position or different capacity on current protection. The paper analyzes magnitude and distribution of fault current under short-circuit condition and change curves of fault current are given, which provides some theoretical basis for new relay protection scheme.


Sign in / Sign up

Export Citation Format

Share Document