Radio planning and optimisation - the challenge ahead

Author(s):  
T. Gill
Keyword(s):  
Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


Author(s):  
Edoardo Amaldi ◽  
Antonio Capone ◽  
Federico Malucelli ◽  
Francesco Signori
Keyword(s):  

2014 ◽  
Vol 56 (6) ◽  
pp. 123-141 ◽  
Author(s):  
Nektarios Moraitis ◽  
Panagiotis N. Vasileiou ◽  
Constantine G. Kakoyiannis ◽  
Athanasios Marousis ◽  
Athanasios G. Kanatas ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 250 ◽  
Author(s):  
Diego del Rey Carrión ◽  
Leandro Juan-Llácer ◽  
José-Víctor Rodríguez

Transitioning a Terrestrial Trunked Radio (TETRA) network to a Long-Term Evolution (LTE) network in public protection and disaster relief (PPDR) systems is a path to providing future services requiring high radio interface throughput and allowing broadband PPDR (BB-PPDR) radio communications. Users of TETRA networks are currently considering how to deploy a BB-PPDR network in the coming years. This study offers several radio planning considerations in TETRA to LTE migration for such networks. The conclusions are obtained from a case study in which both measurements and radioelectric coverage simulations were carried out for the real scenario of the Murcia Region, Spain, for both TETRA and LTE systems. The proposed considerations can help PPDR agencies efficiently estimate the cost of converting a TETRA network to an LTE network. Uniquely in this study, the total area is divided into geographical areas of interest that are defined as administrative divisions (region, municipal areas, etc.). The analysis was carried out using a radio planning tool based on a geographic information system and the measurements have been used to tune the propagation models. According to the real scenario considered, the number of sites needed in the LTE network—for a specific quality of service (90% for the whole region and 85% for municipal areas)—is a factor of 2.4 higher than for TETRA network.


Sign in / Sign up

Export Citation Format

Share Document