Benefits of long coherent integration for CZT‐based GPS signal acquisition

2018 ◽  
Vol 54 (16) ◽  
pp. 995-997
Author(s):  
Bing Xu ◽  
Jie Dou ◽  
Lei Dou
2013 ◽  
Vol 706-708 ◽  
pp. 794-797
Author(s):  
Yan Min Li ◽  
Qing Ming Yi ◽  
Min Shi

In order to improve acquisition speed and carrier frequency accuracy, a fast algorithm to acquire GPS signal is proposed. Signal-to-Noise Ratio is improved by coherent integration and non-coherent integration. The advantages of serial sliding algorithm and circular correlation algorithm are combined to achieve high carrier frequency accuracy. Removing the information of C/A code makes serial search from two-dimensional to one-dimensional to achieve less computation. Simulation shows weak signal of-30dB S/N is successfully acquired. The error of carrier frequency is controlled within 50Hz. So the data processing efficiency for the tracking loop is greatly increased.


2012 ◽  
Vol 349 (5) ◽  
pp. 1930-1943 ◽  
Author(s):  
Kia Fallahi ◽  
Donglin Wang ◽  
Michel Fattouche

2012 ◽  
Vol 66 (4) ◽  
pp. 479-500 ◽  
Author(s):  
P. Huang ◽  
Y. Pi ◽  
I. Progri

In some Global Positioning System (GPS) signal propagation environments, especially in the ionosphere and urban areas with heavy multipath, GPS signal encounters not only additive noise but also multiplicative noise. In this paper we compare and contrast the conventional GPS signal acquisition method which focuses on handling GPS signal acquisition with additive noise, with the enhanced GPS signal processing under multiplicative noise by proposing an extension of the GPS detection mechanism, to include the GPS detection model that explains detection of the GPS signal under additive and multiplicative noise. For this purpose, a novel GPS signal detection scheme based on high order cyclostationarity is proposed. The principle is introduced, the GPS signal detection structure is described, the ambiguity of initial PseudoRandom Noise (PRN) code phase and Doppler shift of GPS signal is analysed. From the simulation results, the received GPS signal at low power level, which is degraded by additive and multiplicative noise, can be detected under the condition that the received block of GPS data length is at least 1·6 ms and sampling frequency is at least 5 MHz.


2018 ◽  
Vol 29 (2) ◽  
pp. 236-243 ◽  
Author(s):  
Jianing WANG ◽  
◽  
Baowang LIAN ◽  
Zhe XUE ◽  

Sign in / Sign up

Export Citation Format

Share Document