Fast Algorithm with Improved Circular Correlation Method for GPS Signal Acquisition

2013 ◽  
Vol 706-708 ◽  
pp. 794-797
Author(s):  
Yan Min Li ◽  
Qing Ming Yi ◽  
Min Shi

In order to improve acquisition speed and carrier frequency accuracy, a fast algorithm to acquire GPS signal is proposed. Signal-to-Noise Ratio is improved by coherent integration and non-coherent integration. The advantages of serial sliding algorithm and circular correlation algorithm are combined to achieve high carrier frequency accuracy. Removing the information of C/A code makes serial search from two-dimensional to one-dimensional to achieve less computation. Simulation shows weak signal of-30dB S/N is successfully acquired. The error of carrier frequency is controlled within 50Hz. So the data processing efficiency for the tracking loop is greatly increased.

2019 ◽  
Vol 72 (3) ◽  
pp. 555-574
Author(s):  
Jérôme Leclère ◽  
René Landry

The acquisition of modern Global Navigation Satellite System (GNSS) signals may be difficult due to the presence of a secondary code. Indeed, short coherent integration times should be used without non-coherent integration, which implies a low sensitivity; or long coherent integration times should be used, requiring synchronisation with the secondary code and thus a full correlation, which implies a significant computational burden, especially for signals with long secondary codes such as the Galileo E5 signal. A third option that lies between the previous two is to perform a partial correlation using less than one secondary code period as input, however this is less efficient in terms of complexity than using an entire secondary code period, and the code's autocorrelation properties are completely changed. The authors recently proposed a method based on combining secondary code correlations, allowing the use of intermediate coherent integration times with the possibility to do non-coherent integrations, and the method was successfully applied to the Global Positioning System (GPS) L5 signal. This paper studies the application of the method to the Galileo E5 signal, compares it with the partial correlation method, and discusses the case where less than one secondary code period is used as an input


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2329 ◽  
Author(s):  
Wenhe Yan ◽  
Kunjuan Zhao ◽  
Shifeng Li ◽  
Xinghui Wang ◽  
Yu Hua

The Loran-C system is an internationally standardized positioning, navigation, and timing service system. It is the most important backup and supplement for the global navigation satellite system (GNSS). However, the existing Loran-C signal acquisition methods are easily affected by noise and cross-rate interference (CRI). Therefore, this article proposes an envelope delay correlation acquisition method that, when combined with linear digital averaging (LDA) technology, can effectively suppress noise and CRI. The selection of key parameters and the performance of the acquisition method are analyzed through a simulation. When the signal-to-noise ratio (SNR) is −16 dB, the acquisition probability is more than 90% and the acquisition error is less than 1 μs. When the signal-to-interference ratio (SIR) of the CRI is −5 dB, the CRI can also be suppressed and the acquisition error is less than 5 μs. These results show that our acquisition method is accurate. The performance of the method is also verified by actual signals emitted by a Loran-C system. These test results show that our method can reliably detect Loran-C pulse group signals over distances up to 1500 km, even at low SNR. This will enable the modern Loran-C system to be a more reliable backup for the GNSS system.


2020 ◽  
Vol 38 (5) ◽  
pp. 395-405
Author(s):  
Luca Battaglini ◽  
Federica Mena ◽  
Clara Casco

Background: To study motion perception, a stimulus consisting of a field of small, moving dots is often used. Generally, some of the dots coherently move in the same direction (signal) while the rest move randomly (noise). A percept of global coherent motion (CM) results when many different local motion signals are combined. CM computation is a complex process that requires the integrity of the middle-temporal area (MT/V5) and there is evidence that increasing the number of dots presented in the stimulus makes such computation more efficient. Objective: In this study, we explored whether anodal direct current stimulation (tDCS) over MT/V5 would increase individual performance in a CM task at a low signal-to-noise ratio (SNR, i.e. low percentage of coherent dots) and with a target consisting of a large number of moving dots (high dot numerosity, e.g. >250 dots) with respect to low dot numerosity (<60 dots), indicating that tDCS favour the integration of local motion signal into a single global percept (global motion). Method: Participants were asked to perform a CM detection task (two-interval forced-choice, 2IFC) while they received anodal, cathodal, or sham stimulation on three different days. Results: Our findings showed no effect of cathodal tDCS with respect to the sham condition. Instead, anodal tDCS improves performance, but mostly when dot numerosity is high (>400 dots) to promote efficient global motion processing. Conclusions: The present study suggests that tDCS may be used under appropriate stimulus conditions (low SNR and high dot numerosity) to boost the global motion processing efficiency, and may be useful to empower clinical protocols to treat visual deficits.


Sign in / Sign up

Export Citation Format

Share Document