scholarly journals Enhancement of axial ratio‐beamwidth of X‐band composite microstrip patch antenna with conical ground plane

2020 ◽  
Vol 56 (9) ◽  
pp. 419-421 ◽  
Author(s):  
S. Narke ◽  
S. Ananthakrishnan ◽  
C. Bhattacharya
Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2014 ◽  
Vol 13 (3) ◽  
pp. 4291-4301
Author(s):  
Rahul Tiwari ◽  
Seema Verma

In this communication two proposed antenna described one for broadband at 6.71445GHz to 11.9362GHz with finite ground plane. The antenna designed with 11.4051mm× 8.388 mm radiating copper patch with ground plane design with 21.0051mm x17. 988mm. And this Compact broadband rectangular shape microstrip patch antenna is designed and analyzed for the return loss of -20.08 dB is achieved at the resonant frequency of 7.941GHz, From Antenna2-it is observed that, antenna for multiband at different frequency. The primary radiating elements are Simple Rectangular Microstrip Patch Antenna in upper side with probe feed and use finite ground plane are two parallel crossed printed slot for three different frequency applications which is smaller in size compared to other available multiband antennas. From the result, it is observed that, the return loss of -16.97 dB is achieved at the first resonant frequency of 4.853GHz, -10.30dB at the second resonant frequency of 8.382GHz, -10.73 dB at the third resonant frequency of 9.265GHz, -17.38 dB at the fourth resonant frequency of 10.15GHz and -12.37 dB at the fifth resonant frequency of 11.91GHz. This broadband and multi-band highly efficient antenna for use in C-Band, and X-Band.


2017 ◽  
Vol 9 (9) ◽  
pp. 1877-1881 ◽  
Author(s):  
Laaya Sabri ◽  
Nasrin Amiri ◽  
Keyvan Forooraghi

A new single-feed aperture-coupled, X-band microstrip patch antenna array with circular polarization (CP) is designed. CP is achieved using indented microstrip patches fed through the slots on a substrate integrated waveguide. The antenna has the high radiation efficiency more than 90% over the operating frequency. Impedance bandwidth (VSWR < 2) and axial ratio bandwidth (AR < 3 dB) of 11.8, and 10.9% is attained, respectively. Good agreement is achieved between simulated and measured results.


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


2018 ◽  
Vol 11 (19) ◽  
pp. 1-4
Author(s):  
V. Keral Shalini ◽  
M. Annakamatchi ◽  
S. Arthireena ◽  
◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document