Field-contour plots in parabolic cylinder by method of moments

1977 ◽  
Vol 13 (7) ◽  
pp. 207
Author(s):  
K.R.G. Bailey ◽  
T.S.M. Maclean ◽  
G. Morris
1990 ◽  
Vol 137 (1) ◽  
pp. 27 ◽  
Author(s):  
P.C. Kendall ◽  
M.J. Robertson ◽  
P.W.A. McIlroy ◽  
S. Ritchie ◽  
M.J. Adams

Author(s):  
Bernhard F.W. Gschaider ◽  
Claudia C. Honeger ◽  
Christian E. P. Redl ◽  
Johannes Leixnering

2014 ◽  
Vol 42 (4) ◽  
pp. 290-304
Author(s):  
Rajarajan Aiyengar ◽  
Jyoti Divecha

ABSTRACT The blends of natural rubber (NR), polybutadiene rubber (BR), and other forms of rubbers are widely used for enhancing the mechanical and physical properties of rubber compounds. Lots of work has been done in conditioning and mixing of NR/BR blends to improve the properties of its rubber compounds and end products such as tire tread. This article employs response surface methodology designed experiments in five factors; high abrasion furnace carbon black (N 330), aromatic oil, NR/BR ratio, sulfur, and N-oxydiethylene-2-benzothiazole sulfenamide for determination of combined and second order effects of the significant factors leading to simultaneous optimization of the NR/BR blend system. One of the overall optimum of eight properties existed at carbon 44 phr, oil 6.1 phr, NR/BR 78/22 phr with the following values of properties: tensile strength (22 MPa), elongation at break (528%), tear resistance (30 kg/mm), rebound resilience (67%), moderate hardness (68 International rubber hardness degrees) with low heat buildup (17 °C), permanent set (12%), and abrasion loss (57 mm3). More optimum combinations can easily be determined from the NR/BR blend system models contour plots.


1999 ◽  
Vol 39 (6) ◽  
pp. 191-198 ◽  
Author(s):  
Timothy J. Hurse ◽  
Michael A. Connor

In an attempt to gain a better understanding of ammonia and nitrogen removal processes in multi-pond wastewater treatment lagoons, an analysis was carried out of data obtained during regular monitoring of Lagoon 115E at the Western Treatment Plant in Melbourne. To do this, a contour plot approach was developed that enables the data to be displayed as a function of pond number and date. Superimposition of contour plots for different parameters enabled the dependence of ammonia and nitrogen removal rates on various lagoon characteristics to be readily assessed. The importance of nitrification as an ammonia removal mechanism was confirmed. Temperature, dissolved oxygen concentration and algal concentration all had a significant influence on whether or not sizeable nitrifier populations developed and persisted in lagoon waters. The analysis made it evident that a better understanding of microbial, chemical and physical processes in lagoons is needed before their nitrogen removal capabilities can be predicted with confidence.


Sign in / Sign up

Export Citation Format

Share Document