evaporation models
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
G. Aglieri Rinella ◽  
M. Agnello ◽  
...  

AbstractWe report on the inclusive $$\text {J}/\psi $$ J / ψ production cross section measured at the CERN Large Hadron Collider in proton–proton collisions at a center-of-mass energy $$\sqrt{s}~=~13$$ s = 13  TeV. The $$\text {J}/\psi $$ J / ψ mesons are reconstructed in the $$\text {e}^{+}\text {e}^{-}$$ e + e - decay channel and the measurements are performed at midrapidity ($$|y|<0.9$$ | y | < 0.9 ) in the transverse-momentum interval $$0<p_{\mathrm{T}} <40$$ 0 < p T < 40  GeV/$$c$$ c , using a minimum-bias data sample corresponding to an integrated luminosity $$L_{\text {int}} = 32.2~\text {nb}^{-1}$$ L int = 32.2 nb - 1 and an Electromagnetic Calorimeter triggered data sample with $$L_{\text {int}} = 8.3~\mathrm {pb}^{-1}$$ L int = 8.3 pb - 1 . The $$p_{\mathrm{T}}$$ p T -integrated $$\text {J}/\psi $$ J / ψ production cross section at midrapidity, computed using the minimum-bias data sample, is $$\text {d}\sigma /\text {d}y|_{y=0} = 8.97\pm 0.24~(\text {stat})\pm 0.48~(\text {syst})\pm 0.15~(\text {lumi})~\mu \text {b}$$ d σ / d y | y = 0 = 8.97 ± 0.24 ( stat ) ± 0.48 ( syst ) ± 0.15 ( lumi ) μ b . An approximate logarithmic dependence with the collision energy is suggested by these results and available world data, in agreement with model predictions. The integrated and $$p_{\mathrm{T}}$$ p T -differential measurements are compared with measurements in pp collisions at lower energies and with several recent phenomenological calculations based on the non-relativistic QCD and Color Evaporation models.


2021 ◽  
Author(s):  
Zhuoyi Tu ◽  
Yuting Yang ◽  
Michael L. Roderick

Abstract. State-of-the-art evaporation models usually assume the net radiation (Rn) and surface temperature (Ts; or near-surface air temperature) to be independent forcings on evaporation. However, Rn depends directly on Ts via outgoing longwave radiation and this creates a physical coupling between Rn and Ts that extends to evaporation. In this study, we test a maximum evaporation theory originally developed for global ocean over saturated land surfaces, which explicitly acknowledges the interactions between radiation, Ts and evaporation. Similar to the ocean surface, we find a maximum evaporation (LEmax) emerges over saturated land that represents a generic trade-off between a lower Rn and a higher evaporation fraction as Ts increases. Compared with flux site observations at the daily scale, we show that LEmax corresponds well to observed evaporation under non-water-limited conditions and that the Ts at which LEmax occurs also corresponds with the observed Ts. Our results suggest that saturated land surfaces behave essentially the same as ocean surfaces at time scales longer than a day and further imply that the maximum evaporation concept is a natural attribute of saturated land surfaces, which can be the basis of a new approach to estimating evaporation.


2021 ◽  
Vol 27 (S1) ◽  
pp. 404-406
Author(s):  
Charles Fletcher ◽  
Michael Moody ◽  
Jeroen Scheerder ◽  
Claudia Fleischmann ◽  
Brian Geiser ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1484
Author(s):  
Dagmar Dlouhá ◽  
Viktor Dubovský ◽  
Lukáš Pospíšil

We present an approach for the calibration of simplified evaporation model parameters based on the optimization of parameters against the most complex model for evaporation estimation, i.e., the Penman–Monteith equation. This model computes the evaporation from several input quantities, such as air temperature, wind speed, heat storage, net radiation etc. However, sometimes all these values are not available, therefore we must use simplified models. Our interest in free water surface evaporation is given by the need for ongoing hydric reclamation of the former Ležáky–Most quarry, i.e., the ongoing restoration of the land that has been mined to a natural and economically usable state. For emerging pit lakes, the prediction of evaporation and the level of water plays a crucial role. We examine the methodology on several popular models and standard statistical measures. The presented approach can be applied in a general model calibration process subject to any theoretical or measured evaporation.


2021 ◽  
Vol 5 (3) ◽  
pp. 179-196
Author(s):  
Ahmad Fausan ◽  
Budi Indra Setiawan ◽  
Chusnul Arif ◽  
Satyanto Krido Saptomo

The approach to calculating evaporation and evapotranspiration, both potential and actual, varies widely. The models used to estimate the amount of evapotranspiration, particularly at the Maros Climatology Station, Maros Regency, South Sulawesi. Evaporation models use the Penman, Priestley, Bruin, and Valiantzas models while evapotranspiration models use the Penman, Hargreaves, Jensen-Haise, Penman-Monteith, Radiation, Turc, and Makkink models, where all of these methods use climate data, such as are the minimum temperature (Tn), maximum temperature (Tx), air temperature (Ta), average humidity (RH), rainfall (R), duration of sun exposure (SS), and maximum wind speed (U) in calculations using Visual basic program in Microsoft Excel in the form of code. Thus, it is necessary to conduct an analysis of the suitability of the model to the results of the observations in order to find out which model is suitable according to the results of the largest coefficient of determination (R2). Based on the results of the model suitability analysis, a selected model was obtained, namely the Valiantzas model with a value of 0.980 in the evaporation calculation and the Jensen-Haise model, namely 0.889.


Author(s):  
Tao Yang ◽  
Ran Yi ◽  
Qiaoling Wang ◽  
Chien-Pin Chen

Kerosene and diesel fuels involved in spray combustion operations are complex fuels composed of a wide and diverse variety of hydrocarbon components. For practical numerical modeling of the evaporation and combustion phenomena in a combustor, well-designed surrogates fuels that can mimic the real fuel thermal and chemical properties can be utilized. In this study, predictions and validations of the influence of fuel on the liquid and vapor penetration characteristics within a constant-volume chamber were first performed utilizing a benchmark m-xylene/ n-dodecane, Jet-A, and diesel surrogate fuels. Then, simulations of reacting spray of a bi-component m-xylene/ n-dodecane fule, and a four-component Jet-A surrogate fuel ( n-dodecane (C12H26), iso-cetane (C16H34), trans-decalin (C10H18) and toluene (C7H8)) were studied aided by skeleton chemical kinetic mechanisms available from the literature. The results of ignition delay time, lift-off length, radicals, and the mass fraction histories of fuel species were comprehensively used to assess the performance of relevant thermophysical and chemical sub-models. Two different chemical mechanisms were compared in detail to investigate the effect of the chemical kinetics model on the flame structures and spray characteristics. It has been found that the spray ignition of multi-component fuels is remarkably influenced by the chosen chemical kinetic mechanism and less affected by the droplet evaporation models.


2021 ◽  
Author(s):  
Selene Olea-Olea ◽  
Javier Alcocer ◽  
Luis A. Oseguera

&lt;p&gt;The Usumacinta River is the most extensive tropical fluvial system in North America and the principal river in Mexico and the tenth of North America. Diverse and growing anthropogenic activities (land-use change, agriculture, and urban development) modify water quality. However, to separate natural (e.g., geology) from anthropic factors responsible for this system characteristics, we looked to evaluate geological environment&amp;#8217;s influence on the river&amp;#8217;s water quality.&lt;/p&gt;&lt;p&gt;Water and sediment samples were collected along the mainstem and principal tributaries in the rainy and the dry seasons (2017-2018). We analyzed the major ionic composition in water and metals in sediments. We applied inverse and evaporation models (PHREEQC code) to reveal the physicochemical reactions taking place in the river.&lt;/p&gt;&lt;p&gt;The inverse models in the middle basin in both seasons showed the influence of ion-exchange between Ca and K, dissolution of dolomite, and precipitation of kaolinite and calcite, whereas in the lower basin in the rainy season suggested the chemical composition is controlled by ion-exchange among Ca, Na and K, dissolution of dolomite, halite, plagioclase, and feldspar and precipitation of calcite, gypsum, and kaolinite. In addition, the evaporation models in the dry season in the lower basin demonstrate the dominant process taking place is the precipitation of calcite, dolomite, gypsum, halite, and kaolinite.&lt;/p&gt;&lt;p&gt;We found that Cr and Ni are the most abundant metals in the sediments along the river. The geological environment in the basin suggests that the volcanic rocks with felsic minerals could be the source of Ni, whereas sedimentary rocks such as shales and clays could be the source of Cr.&lt;/p&gt;&lt;p&gt;The use of geochemical models in river systems is of great relevance to understanding the presence of major ions concentrations in water and their seasonal and spatial variations, as well the physicochemical processes (i.e., ion-exchange, dissolution, precipitation, redox reactions, and so on) that allow associating or discard the presence of metals.&lt;/p&gt;


2021 ◽  
Author(s):  
Henry Zimba ◽  
Miriam Coenders-Gerrits ◽  
Banda Kawawa ◽  
Bart Schilperoort ◽  
Imasiku Nyambe ◽  
...  

&lt;p&gt;Evaporation is a major constraining factor of water availability at the land surface which makes its assessment a highly significant prerequisite for application in hydrological, agricultural, climate studies and many other disciplines at various scales. However, its importance and calculation procedures have largely been crafted around and often limited to crop productivity. The overarching consequence of this is inaccurate estimates of evaporation for other land surfaces and particularly for forest systems. Due to limited field evaporation observations attention has been focused on the application of satellite-based products. However, in the case of Africa, and the Miombo ecosystem in particular, the number of flux towers is extremely limited (very few if any) which makes it extremely difficult to evaluate available satellite-based evaporation products. In this study we used the energy balance Bowen ratio approach to estimate field evaporation in a dense Miombo Woodland which we then used to evaluate four energy balance evaporation models. The models evaluated included the MOD16, SEBS, SSEBop and WaPOR. Furthermore, cluster analysis was used to assess the similarity of the models in simulating evaporation. The results show that at daily and dekadal scale the simulated evaporation by the four models significantly varied from field evaporation observations. However, less variations were observed at monthly scale.&amp;#160; Furthermore, all four models overestimated evaporation during the dry season (June-September) with RMSE ranges between 0.21 &amp;#8211; 0.38 mm.day&lt;sup&gt;-1&lt;/sup&gt; and 6.64 - 9.91 mm.month&lt;sup&gt;-1&lt;/sup&gt;. Based on the RMSE and biases the MOD16 (RMSE = 6.64 mm.month&lt;sup&gt;-1&lt;/sup&gt;; Bias = 2.04 mm.month&lt;sup&gt;-1&lt;/sup&gt;), SEBS (RMSE = 8.69 mm.month&lt;sup&gt;-1&lt;/sup&gt;; Bias = 5.72 mm.month&lt;sup&gt;-1&lt;/sup&gt;) and WaPOR (RMSE = 7.44 mm.month&lt;sup&gt;-1&lt;/sup&gt;; Bias = 6.67 mm.month&lt;sup&gt;-1&lt;/sup&gt;) ranked higher than the SSEBop (RMSE = 9.91 mm.month&lt;sup&gt;-1&lt;/sup&gt;; Bias = 9.84 mm.month&lt;sup&gt;-1&lt;/sup&gt;) in simulating evaporation in the Miombo Woodland. Three clusters were observed with the SEBS and WaPOR grouped together indicating their close similarity in simulating evaporation in the Miombo ecosystem while the MOD16 and SSEBop were each grouped separately. Results of this study could aid the interpretation of these evaporation models in Miombo Woodland covered basins such as the Zambezi River Basin in Southern Africa. This could help in monitoring basin water availability and ecosystem reactions and feedbacks to climate change and anthropogenic impacts.&lt;/p&gt;


2020 ◽  
Vol 13 (1) ◽  
pp. 313
Author(s):  
Viktor Dubovský ◽  
Dagmar Dlouhá ◽  
Lukáš Pospíšil

Evaporation is one of the main components of the water cycle in nature. Our interest in free water surface evaporation is due to the needs of ongoing hydric recultivation of the former Ležáky–Most quarry, i.e., Lake Most, and also other planned hydric recultivations in the region. One of the key components of hydric reclamation planning is the securitization of long-term sustainability, which is based on the capability to keep the final water level at a stable level. In our work, we are interested in the evaporation estimation in the area of Lake Most (Czech Republic, Europe). This lake has been artificially created only a few years ago, and nowadays we are looking for a simple evaporation model, based on which we will be able to decide which measurement devices have to be installed at the location to provide more localized data to the model. In this paper, we calibrate state-of-the-art simplified evaporation models against the Penman–Monteith equation based on the Nash–Sutcliffe efficiency maximization. We discuss the suitability of this approach using real-world climate data from the weather station located one km from the area of interest.


Sign in / Sign up

Export Citation Format

Share Document