Introduction to fuel cells and hydrogen technology

2002 ◽  
Vol 11 (6) ◽  
pp. 205-216 ◽  
Author(s):  
B. Cook
2009 ◽  
pp. 368-373
Author(s):  
Angelika Heinzel

2019 ◽  
Vol 12 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Renata Wlodarczyk

The PEMFC (Polymer Exchange Membrane Fuel Cell) is one of the most researched generators in hydrogen technology. The PEMFCs offer low emissions, several applications in industry with high power density. The basic material for the construction of components in low-temperature fuel cells is carbon or its allotropic forms and carbon nanomaterials. Carbon materials are used to build diffusion layers of electrodes, as catalyst carriers, for the construction of covers/interconnectors and as fuel. In this work, the carbon materials used to build a single cell have been reviewed taking into account various methods of fabrication and modification of materials.


Author(s):  
Abhijit Mukherjee ◽  
Jason M. Keith ◽  
Daniel A. Crowl ◽  
David W. Caspary ◽  
Jeff Allen ◽  
...  

There is a strong need for a transformative curriculum to train the next generation of engineers who will help design, construct, and operate fuel cell vehicles and the associated hydrogen fueling infrastructure. In this poster we discuss how we integrate fuel cell and hydrogen technology into the project-based, hands-on learning experiences in engineering education at Michigan Technological University. Our approach is to involve students in the learning process via team-based interactive projects with a real-world flavor. This project has resulted in the formation of an “Interdisciplinary Minor in Hydrogen Technology” at Michigan Technological University. To receive the 16 credit minor, students are required to satisfy requirements in four areas, which are: • Participation in multiple semesters of the Alternative Fuels Group Enterprise, where students work on hands-on integration, design, and/or research projects in hydrogen and fuel cells. • Enrolling in a fuel cell course. • Enrolling in a lecture or laboratory course on hydrogen energy. • Enrolling in discipline-specific elective courses.


2021 ◽  
Vol 312 ◽  
pp. 07009
Author(s):  
Simona Di Micco ◽  
Mariagiovanna Minutillo ◽  
Antonio Forcina ◽  
Viviana Cigolotti ◽  
Alessandra Perna

The maritime transportation sector is one of the main contributors to global emissions of greenhouse gases (GHGs), volatile organic compounds (VOCs), particulate matter (PM), hazardous air pollutants, NOX and SOX. In particular, it is estimated that the CO2 emissions in this sector are about 1 Gt every year. The International Maritime Organization (IMO) adopted stringent emission limits in its Tier III regulation, most notably on NOX and SOX emissions and pledged to reach a reduction in greenhouse gas (GHG) emissions from international shipments by at least 50% by the year 2050, compared to 2008 emissions. For emission control areas (ECAs) these requirements are particularly strict and will be difficult to meet with traditional diesel engines and bunker fuels. Therefore, ship owners need to adopt solutions to bring emissions within these and other future limits by means of environmentally friendly fuels and high efficiency propulsion technologies. In this context, hydrogen and fuel cells play a crucial role, thanks to their low criteria pollutant and GHG emission. This paper presents a techno-economic feasibility study for replacing the conventional diesel engine powertrain, usually employed in Ro-Pax ferries, with an innovative system based on polymer electrolyte membrane fuel cell (PEMFC) technology. The ferry is actually powered by four diesel engines, which deliver a total output of 37.8 MW. The ferry also has two auxiliary engines which give an output of 4.0 MW and also two 2.0 MW bow thrusters for its manoeuvring. The energy analysis has allowed to define the hydrogen consumption for each cruise, as well as the optimal size of the innovative propulsion system. In particular, The PEMFC powertrain is sized at the same maximum power output as the main diesel engine and, thanks to the modular architecture of fuel cells and their flexible performance at partial load, the auxiliary engines are not contemplated. Moreover, in order to identify the best solution in terms of ship’s weight and space requirements, two hydrogen storage solutions based on compressed hydrogen technology and liquefied hydrogen technology, have been analyzed and compared. The economic assessment has been carried out by estimating the CAPEX and OPEX for each H2 storage technology by considering short-term, mid-term and long-term scenarios (from 2020 to 2050).


2007 ◽  
Vol 70 (2) ◽  
pp. 491-518 ◽  
Author(s):  
Antje Klitkou ◽  
Stian Nygaard ◽  
Martin Meyer

Sign in / Sign up

Export Citation Format

Share Document