Frequency domain self-tuning for vibration control

1996 ◽  
Author(s):  
L. Mitsis
1997 ◽  
Vol 40 (1) ◽  
pp. 35-40
Author(s):  
A. Karshenas ◽  
M. Dunnigan ◽  
B. Williams ◽  
J. Goodfollow

A typical vibration test for a specimen is to subject it to a specific spectrum of random vibration. This paper proposes multi-resolution processing using a "frequency domain self-tuning" algorithm for application to random vibration control. MATLAB programs simulate two-octave-band and three-octave-band processing for random vibration control. A PC-based, digital signal processing (DSP) board was used to implement two-octave processing. The simulation and practical results are presented.


2016 ◽  
Vol 24 (6) ◽  
pp. 1086-1100
Author(s):  
Utku Boz ◽  
Ipek Basdogan

In adaptive control applications for noise and vibration, finite ımpulse response (FIR) or ınfinite ımpulse response (IIR) filter structures are used for online adaptation of the controller parameters. IIR filters offer the advantage of representing dynamics of the controller with smaller number of filter parameters than with FIR filters. However, the possibility of instability and convergence to suboptimal solutions are the main drawbacks of such controllers. An IIR filtering-based Steiglitz–McBride (SM) algorithm offers nearly-optimal solutions. However, real-time implementation of the SM algorithm has never been explored and application of the algorithm is limited to numerical studies for active vibration control. Furthermore, the prefiltering procedure of the SM increases the computational complexity of the algorithm in comparison to other IIR filtering-based algorithms. Based on the lack of studies about the SM in the literature, an SM time-domain algorithm for AVC was implemented both numerically and experimentally in this study. A methodology that integrates frequency domain IIR filtering techniques with the classic SM time-domain algorithm is proposed to decrease the computational complexity. Results of the proposed approach are compared with the classical SM algorithm. Both SM and the proposed approach offer multimodal vibration suppression and it is possible to predict the performance of the controller via simulations. The proposed hybrid approach ensures similar vibration suppression performance compared to the classical SM and offers computational advantage as the number of control filter parameters increases.


2014 ◽  
Vol 333 (21) ◽  
pp. 5244-5268 ◽  
Author(s):  
Nemanja D. Zorić ◽  
Aleksandar M. Simonović ◽  
Zoran S. Mitrović ◽  
Slobodan N. Stupar ◽  
Aleksandar M. Obradović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document