Noncollocated adaptive-passive vibration control using self-tuning vibration absorbers

Author(s):  
C.A. Buhr ◽  
M.A. Franchek ◽  
R.J. Bernhard
Author(s):  
Sara Ying Zhang ◽  
Jason Zheng Jiang ◽  
Simon A. Neild

Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure–immittance approach. Using this approach, a full set of possible series–parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.


Aerospace ◽  
2004 ◽  
Author(s):  
Suresh V. Venna ◽  
Y. J. Lin

In this paper, an attempt is made to determine optimal location of piezoelectric transducers for passive vibration control of geometrically complicated structures and shells with non-linear curvatures. Industry-standard aircraft leading edge structure is considered for the analysis and experimental verification. Finite element model of the leading edge structure consisting of a thin layer of piezoelectric elements on the inner surface of the leading edge covering the whole surface is built and appropriate boundary conditions are applied. All the piezoelectric properties are incorporated into the elements. Modal piezoelectric analysis is performed to investigate the electric potential developed in the piezoelectric elements in the first bending and torsion modes. Location of the piezoelectric elements yielding highest amount of electric potential is identified as the best location for vibration absorption. Based on the analysis results, six piezoelectric vibration absorbers are determined to be used for performing the passive vibration control of the two modes. Results of the analysis are verified with an experimental testing of the aluminum leading edge with piezoelectric vibration absorbers firmly attached to it. A good agreement is found between the analytical and experimental results. Further, two resistive shunt circuits are designed for the passive damping of the first bending and torsion modes in which the electric potential developed would be dissipated as heat to obtain passive vibration compensation. Experimental verification of the passive damping is performed at these two modes with appropriate shunt circuits affixed to the piezoelectric vibration absorbers. Amplitude reduction around 30% and 25% and Q-factor reduction up to 15% and 10% are obtained in the bending and torsion modes, respectively. In addition, some amount of damping is observed at higher modes as well.


Author(s):  
Jéssica Carolina Barbosa Vieira ◽  
Thiago da Silva ◽  
Carlos Alberto Bavastri

Author(s):  
Adailton Gomes Pereira ◽  
Maria Carolina Barcellos de Oliveira ◽  
Sidney Bruce Shiki ◽  
Armando Ítalo Sette Antonialli

2013 ◽  
Author(s):  
Stephen Leslie Williams ◽  
Keith R Ptak ◽  
Dr. Guillermo Hahn ◽  
Craig Masson ◽  
Prof. Andre Mazzoleni ◽  
...  

2021 ◽  
Author(s):  
Xingbao Huang ◽  
Xiao Zhang ◽  
Bintang Yang

Abstract This paper introduces an energy conversion inspired vibration control methodology and presents a representative prototype of tunable bi-stable energy converters. This work is concerned on improving the vibration absorption and energy conversion performance of tunable bi-stable clustered energy conversion inspired dynamic vibration absorbers (EC-DVAs). The deterministic parametric analysis of the energy transfer performance of clustered EC-DVAs is conducted. Firstly, nonlinear vibration behaviors including transient energy transfer and snap-through motions are studied, and then effects of EC-DVA number on vibration control is investigated. Furthermore, the optimal computation based on adjusting the length ratio (namely bi-stable potential barrier height) is developed to obtain the maximum energy conversion efficiency of clustered EC-DVAs and the minimum residual kinetic energy of the primary system considering different number of clustered EC-DVAs. Moreover, the optimal calculation based on optimal EC-DVA number is also developed to achieve the most excellent vibration absorption and energy conversion performance. Finally, the optimal calculation based on optimal mass ratio is conducted. Numerical simulations show that when the total mass ratio is constant the snap-through motions of each EC-DVA depend remarkably on EC-DVA number; the energy conversion efficiency and residual kinetic energy after dynamic length ratio optimization is independent on ambient input energy and EC-DVA number; The energy conversion efficiency and vibration absorption performance based on optimal EC-DVA number maintain high efficiency and stable when the ambient input energy or the potential energy of clustered EC-DVAs varies. The optimal mass ratio is large when the system’s potential barrier is too large and the ambient input energy is small. Therefore, the presented tunable bi-stable system of clustered EC-DVAs with appropriate bi-stable potential function and proposed optimization strategies is a potential alternative for vibration control of mechanical components exposed to varying impulses.


Sign in / Sign up

Export Citation Format

Share Document