Fault dissection process and typical fault analysis of high voltage power cables

Author(s):  
Y. Zhou ◽  
B. He ◽  
Z. Ye ◽  
X. Wang ◽  
W. Zhang ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1653
Author(s):  
Ioan-Cătălin Damian ◽  
Mircea Eremia ◽  
Lucian Toma

The concept of high-voltage DC transmission using a multiterminal configuration is presently a central topic of research and investment due to rekindled interest in renewable energy resource integration. Moreover, great attention is given to fault analysis, which leads to the necessity of developing proper tools that enable proficient dynamic simulations. This paper leverages models and control system design techniques and demonstrates their appropriateness for scenarios in which faults are applied. Furthermore, this paper relies on full-bridge submodule topologies in order to underline the increase in resilience that such a configuration brings to the multiterminal DC network, after an unexpected disturbance. Therefore, strong focus is given to fault response, considering that converters use a full-bridge topology and that overhead power lines connect the terminals.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012051
Author(s):  
Sanwei Liu ◽  
Chao Qiu ◽  
Yi Xie ◽  
Jianjia Duan ◽  
Fuyong Huang ◽  
...  

Abstract As a component of the Internet of things, high-voltage cables are the power supply infrastructure for the modern development of cities. The operation experience shows that the high-voltage cable has been broken down many times, due to the defective operation. At present, due to the limitation of detection technology, the research on detection and identification of defects in high-voltage cables is progressing slowly. Therefore, a new DR technology based on X-ray digital imaging is proposed in this paper to realize real-time detection of defects in the semi-conductive buffer layer of high-voltage cables, and intelligent detection of DR images of high-voltage cables by using image depth processing technology to realize intelligent identification of defects in the buffer layer of power cables. The results show that using the new DR technique proposed in this paper, the accurate and intuitive DR image of high-voltage cable can be obtained quickly, and the intelligent identification of defects can be realized.


Sign in / Sign up

Export Citation Format

Share Document