Corona-Level Scanning or High-Voltage Power Cables

Author(s):  
F. H. Gooding ◽  
H. B. Slade
Keyword(s):  
2021 ◽  
Vol 2113 (1) ◽  
pp. 012051
Author(s):  
Sanwei Liu ◽  
Chao Qiu ◽  
Yi Xie ◽  
Jianjia Duan ◽  
Fuyong Huang ◽  
...  

Abstract As a component of the Internet of things, high-voltage cables are the power supply infrastructure for the modern development of cities. The operation experience shows that the high-voltage cable has been broken down many times, due to the defective operation. At present, due to the limitation of detection technology, the research on detection and identification of defects in high-voltage cables is progressing slowly. Therefore, a new DR technology based on X-ray digital imaging is proposed in this paper to realize real-time detection of defects in the semi-conductive buffer layer of high-voltage cables, and intelligent detection of DR images of high-voltage cables by using image depth processing technology to realize intelligent identification of defects in the buffer layer of power cables. The results show that using the new DR technique proposed in this paper, the accurate and intuitive DR image of high-voltage cable can be obtained quickly, and the intelligent identification of defects can be realized.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6540
Author(s):  
Mohammed A. Shams ◽  
Hussein I. Anis ◽  
Mohammed El-Shahat

Online detection of partial discharges (PD) is imperative for condition monitoring of high voltage equipment as well as power cables. However, heavily contaminated sites often burden the signals with various types of noise that can be challenging to remove (denoise). This paper proposes an algorithm based on the maximal overlap discrete wavelet transform (MODWT) to denoise PD signals originating from defects in power cables contaminated with various levels of noises. The three most common noise types, namely, Gaussian white noise (GWN), discrete spectral interference (DSI), and stochastic pulse shaped interference (SPI) are considered. The algorithm is applied to an experimentally acquired void-produced partial discharge in a power cable. The MODWT-based algorithm achieved a good improvement in the signal-to-noise ratio (SNR) and in the normalized correlation coefficient (NCC) for the three types of noises. The MODWT-based algorithm performance was also compared to that of the empirical Bayesian wavelet transform (EBWT) algorithm, in which the former showed superior results in denoising SPI and DSI, as well as comparable results in denoising GWN. Finally, the algorithm performance was tested on a PD signal contaminated with the three type of noises simultaneously in which the results were also superior.


Author(s):  
Oleksandr Tkachenko ◽  
◽  
Vladimir Grinchenko ◽  
Pavel Dobrodeyev ◽  
◽  
...  

The paper deals with a single-loop shield with an asymmetric magnetic coupling used for a magnetic field mitigation of a high-voltage three-phase cable line. The goal is to evaluate a thermal effect of this shield on a cable line capacity. To calculate the flat cable line capacity in the nonshielded case, we use a standard IEC 60287. To achieve the goal we carry out a numerical simulation of the thermal field when the shield is installed. Wherein, we deal with two specific sections. One is a long section with the shield being distant from the cable line. The other is a relatively short section where the shield is located near the power cables. The thermal field is applied for a long section in a two-dimensional formulation, and a three-dimensional formulation is used for the short section. Hence, we have obtained the dependences of the maximum temperature of the power cables on parameters of the shield and its location height above the cable line. The most significant allowable cross-sections of the shield cable and their location height have been determined, when the thermal effect of the shield does not decrease the cable line capacity. These results have ensured the maximum cable line capacity while shielding. The shield temperature is shown to exceed the allowable level in the short section. To reduce it the thermal backfill has been used. We recommend the values of its thermal resistivity to be used for different parameters of the single-loop shield.


Sign in / Sign up

Export Citation Format

Share Document