Structure‐preserved MOR method for coupled systems via orthogonal polynomials and Arnoldi algorithm

2019 ◽  
Vol 13 (6) ◽  
pp. 879-887
Author(s):  
Zhen‐Zhong Qi ◽  
Yao‐Lin Jiang ◽  
Zhi‐Hua Xiao
2018 ◽  
Vol 73 (4) ◽  
pp. 491-503 ◽  
Author(s):  
Matthias Spitzmuller ◽  
Guihyun Park

Author(s):  
Wen Zhang ◽  
Wenliang Wang ◽  
Hao Wang ◽  
Jiong Tang

A method for dynamic analysis of flexible bladed-disk/shaft coupled systems is presented in this paper. Being independant substructures first, the rigid-disk/shaft and each of the bladed-disk assemblies are analyzed separately in a centrifugal force field by means of the finite element method. Then through a modal synthesis approach the equation of motion for the integral system is derived. In the vibration analysis of the rotating bladed-disk substructure, the geometrically nonlinear deformation is taken into account and the rotationally periodic symmetry is utilized to condense the degrees of freedom into one sector. The final equation of motion for the coupled system involves the degrees of freedom of the shaft and those of only one sector of each of the bladed-disks, thereby reducing the computer storage. Some computational and experimental results are given.


Sign in / Sign up

Export Citation Format

Share Document