arnoldi algorithm
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (20) ◽  
pp. 9435
Author(s):  
Ning Wang ◽  
Jiajia Chen ◽  
Huifang Wang ◽  
Shiyou Yang

In simulations of three-dimensional transient physics filled through a numerical approach, the order of the equation set of high-fidelity models is extremely high. To eliminate the large dimension of equations, a model order reduction (MOR) technique is introduced. In the existing MOR methods, the block Arnoldi algorithm-based MOR method is numerically stable, achieving a passively reduced order model. Nevertheless, this method performs poorly when it is applied to very wide-frequency transients. To eliminate this deficiency, multipoint MOR methods are emerging. However, it is hard to directly apply an existing multipoint MOR method to a 3-D transient field equation set. The implementation issues in a reduction process (such as the selection of expansion points, the number of moments matched at a point and the error bound) have not been explored in detail. In this respect, an adaptive multipoint model reduction model based on the Arnoldi algorithm is proposed to obtain the reduced-order models of a 3-D temperature field. The originality of this study is the proposal of a novel adaptive algorithm for selecting expansion points, matching moments automatically, using a posterior-error estimator based on temperature response coupled with a network topological method (NTM). The computational efficiency and accuracy of the proposed method are evaluated by the numerical results from solving the temperature field of a prototype insulated-gate bipolar transistor (IGBT).


2021 ◽  
Vol 381 ◽  
pp. 113034
Author(s):  
Qian-Ying Hu ◽  
Chun Wen ◽  
Ting-Zhu Huang ◽  
Zhao-Li Shen ◽  
Xian-Ming Gu
Keyword(s):  

2020 ◽  
Vol 28 (1) ◽  
pp. 15-32
Author(s):  
Silvia Gazzola ◽  
Paolo Novati

AbstractThis paper introduces and analyzes an original class of Krylov subspace methods that provide an efficient alternative to many well-known conjugate-gradient-like (CG-like) Krylov solvers for square nonsymmetric linear systems arising from discretizations of inverse ill-posed problems. The main idea underlying the new methods is to consider some rank-deficient approximations of the transpose of the system matrix, obtained by running the (transpose-free) Arnoldi algorithm, and then apply some Krylov solvers to a formally right-preconditioned system of equations. Theoretical insight is given, and many numerical tests show that the new solvers outperform classical Arnoldi-based or CG-like methods in a variety of situations.


Author(s):  
Gaoxin Zhou ◽  
Zhi Gang

In recent years, high order harmonic (or eigenvector) of neutron diffusion equation has been widely used in on-line monitoring system of reactor power. There are two kinds of calculation method to solve the equation: corrected power iteration method and Krylov subspace methods. Fu Li used the corrected power iteration method. When solving for the ith harmonic, it tries to eliminate the influence of the front harmonics using the orthogonality of the harmonic function. But its convergence speed depends on the occupation ratio. When the dominant ratios equal to 1 or close to 1, convergence speed of fixed source iteration method is slow or convergence can’t be achieved. Another method is the Krylov subspace method, the main idea of this method is to project the eigenvalue and eigenvector of large-scale matrix to a small one. Then we can solve the small matrix eigenvalue and eigenvector to get the large ones. In recent years, the restart Arnoldi method emerged as a development of Krylov subspace method. The method uses continuous reboot Arnoldi decomposition, limiting expanding subspace, and the orthogonality of the subspace is guaranteed using orthogonalization method. This paper studied the refined algorithms, a method based on the Krylov subspace method of solving eigenvalue problem for large sparse matrix of neutron diffusion equation. Two improvements have been made for a restarted Arnoldi method. One is that using an ingenious linear combination of the refined Ritz vector forms an initial vector and then generates a new Krylov subspace. Another is that retaining the refined Ritz vector in the new subspace, called, augmented Krylov subspace. This way retains useful information and makes the resulting algorithm converge faster. Several numerical examples are the new algorithm with the implicitly restart Arnoldi algorithm (IRA) and the implicitly restarted refined Arnoldi algorithm (IRRA). Numerical results confirm efficiency of the new algorithm.


2017 ◽  
Vol 39 (5) ◽  
pp. S197-S221 ◽  
Author(s):  
Mario Berljafa ◽  
Stefan Güttel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document