scholarly journals Hybridisation of single-image super-resolution with edge-aware multi-focus image fusion for edge enrichment

Author(s):  
Sreeja Gopalakrishnan ◽  
Saraniya Ovireddy
Author(s):  
Vikas Kumar ◽  
Tanupriya Choudhury ◽  
Suresh Chandra Satapathy ◽  
Ravi Tomar ◽  
Archit Aggarwal

Recently, huge progress has been achieved in the field of single image super resolution which augments the resolution of images. The idea behind super resolution is to convert low-resolution images into high-resolution images. SRCNN (Single Resolution Convolutional Neural Network) was a huge improvement over the existing methods of single-image super resolution. However, video super-resolution, despite being an active field of research, is yet to benefit from deep learning. Using still images and videos downloaded from various sources, we explore the possibility of using SRCNN along with image fusion techniques (minima, maxima, average, PCA, DWT) to improve over existing video super resolution methods. Video Super-Resolution has inherent difficulties such as unexpected motion, blur and noise. We propose Video Super Resolution – Image Fusion (VSR-IF) architecture which utilizes information from multiple frames to produce a single high- resolution frame for a video. We use SRCNN as a reference model to obtain high resolution adjacent frames and use a concatenation layer to group those frames into a single frame. Since, our method is data-driven and requires only minimal initial training, it is faster than other video super resolution methods. After testing our program, we find that our technique shows a significant improvement over SCRNN and other single image and frame super resolution techniques.


Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


Author(s):  
Vishal Chudasama ◽  
Kishor Upla ◽  
Kiran Raja ◽  
Raghavendra Ramachandra ◽  
Christoph Busch

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Kai Shao ◽  
Qinglan Fan ◽  
Yunfeng Zhang ◽  
Fangxun Bao ◽  
Caiming Zhang

2021 ◽  
Vol 213 ◽  
pp. 106663
Author(s):  
Yujie Dun ◽  
Zongyang Da ◽  
Shuai Yang ◽  
Yao Xue ◽  
Xueming Qian

Sign in / Sign up

Export Citation Format

Share Document