Real-time fault analysis of transmission lines using wavelet multi-resolution analysis based frequency-domain approach

2016 ◽  
Vol 10 (7) ◽  
pp. 693-703 ◽  
Author(s):  
Sundaravaradan Navalpakkam Ananthan ◽  
Rounak Meyur ◽  
Maddikara Jaya Bharata Reddy ◽  
Rajaraman Padmanabhan ◽  
Balimidi Mallikarjuna ◽  
...  
2020 ◽  
Vol 101 (4) ◽  
pp. 335-345
Author(s):  
Debopoma Kar Ray ◽  
Anisha Rai ◽  
Ankit Kumar Khetan ◽  
Abhishek Mishra ◽  
Surajit Chattopadhyay

Author(s):  
Jude I. Aneke ◽  
O. A. Ezechukwu ◽  
P. I. Tagboh

This paper proposes a fault (line-to-line) location on Ikeja West – Benin 330kV electric power transmission lines using wavelet multi-resolution analysis and neural networks pattern recognition abilities. Three-phase line-to-line current and voltage waveforms measured during the occurrence of a fault in the power transmission-line were pre-processed first and then decomposed using wavelet multi-resolution analysis to obtain the high-frequency details and low-frequency approximations. The patterns formed based on high-frequency signal components were arranged as inputs of the neural network, whose task is to indicate the occurrence of a fault on the lines. The patterns formed using low-frequency approximations were arranged as inputs of the second neural network, whose task is to indicate the exact fault type. The new method uses both low and high-frequency information of the fault signal to achieve an exact location of the fault. The neural network was trained to recognize patterns, classify data and forecast future events. Feed forward networks have been employed along with back propagation algorithm for each of the three phases in the Fault location process. An analysis of the learning and generalization characteristics of elements in power system was carried using Neural Network toolbox in MATLAB/SIMULINK environment. Simulation results obtained demonstrate that neural network pattern recognition and wavelet multi-resolution analysis approach are efficient in identifying and locating faults on transmission lines as the average percentage error in fault location was just 0.1386%. This showed that satisfactory performance was achieved especially when compared to the conventional methods such as impedance and travelling wave methods.


2021 ◽  
Vol 65 (4) ◽  
pp. 953-998
Author(s):  
Mark A. Iwen ◽  
Felix Krahmer ◽  
Sara Krause-Solberg ◽  
Johannes Maly

AbstractThis paper studies the problem of recovering a signal from one-bit compressed sensing measurements under a manifold model; that is, assuming that the signal lies on or near a manifold of low intrinsic dimension. We provide a convex recovery method based on the Geometric Multi-Resolution Analysis and prove recovery guarantees with a near-optimal scaling in the intrinsic manifold dimension. Our method is the first tractable algorithm with such guarantees for this setting. The results are complemented by numerical experiments confirming the validity of our approach.


Author(s):  
Camilla Ronchei ◽  
Sabrina Vantadori ◽  
Andrea Carpinteri ◽  
Ignacio Iturrioz ◽  
Roberto Issopo Rodrigues ◽  
...  

2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


Sign in / Sign up

Export Citation Format

Share Document