Lead zirconate titanate thin films for microwave device applications

1998 ◽  
Vol 145 (5) ◽  
pp. 373 ◽  
Author(s):  
S. Arscott ◽  
R.E. Miles ◽  
S.J. Milne
2006 ◽  
Vol 100 (3) ◽  
pp. 036102 ◽  
Author(s):  
Qi-Yue Shao ◽  
Ai-Dong Li ◽  
Yi-Dong Xia ◽  
Di Wu ◽  
Zhi-Guo Liu ◽  
...  

1992 ◽  
Vol 276 ◽  
Author(s):  
D. L. Polla ◽  
W. P. Robbins ◽  
T. Tamagawa ◽  
C. Ye

ABSTRACTFerroelectric thin films of the lead zirconate titanate family have been integrated with silicon-based micromachined structures in the fabrication of microelectromechanical devices. Sol-gel deposition techniques have been applied in the formation of ferroelectric thin films with high piezoelectric and pyroelectric coefficients for physical forces sensors and infrared detectors, respectively. Knowledge of both electrical and mechanical properties is important in realizing microelectromechanical devices with predictable performance. This pape reports piezoelectric coefficient, pyroelectric coefficient, dielectric constant, and Young's modulus for lead zirconate titanate and lead titanate thin films.


2004 ◽  
Vol 830 ◽  
Author(s):  
Hiroshi Nakaki ◽  
Hiroshi Uchida ◽  
Shoji Okamoto ◽  
Shintaro Yokoyama ◽  
Hiroshi Funakubo ◽  
...  

ABSTRACTRare-earth-substituted tetragonal lead zirconate titanate thin films were synthesized for improving the ferroelectric property of conventional lead zirconate titanate. Thin films of Pb1.00REx (Zr0.40Ti0.60)1-(3x /4)O3 (x = 0.02, RE = Y, Dy, Er and Yb) were deposited on (111)Pt/Ti/SiO2/(100)Si substrates by a chemical solution deposition (CSD). B-site substitution using rare-earth cations described above enhanced the crystal anisotropy, i.e., ratio of PZT lattice parameters c/a. Remanent polarization (Pr) of PZT film was enhanced by Y3+-, Dy3+- and Er3+-substitution from 20 μC/cm2 up to 26, 25 and 26 μC/cm2 respectively, while ion substitution using Yb3+ degraded the Pr value down to 16 μC/cm2. These films had similar coercive fields (Ec) of around 100 kV/cm. Improving the ferroelectric property of PZT film by rare-earth-substitution would be ascribed to the enhancement of the crystal anisotropy. We concluded that ion substitution using some rare-earth cations, such as Y3+, Dy3+ or Er3+, is one of promising technique for improving the ferroelectric property of PZT film.


2003 ◽  
Vol 15 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
A. Wu ◽  
P. M. Vilarinho ◽  
I. Reaney ◽  
I. M. Miranda Salvado

1994 ◽  
Vol 17 (6) ◽  
pp. 1005-1014 ◽  
Author(s):  
S B Majumder ◽  
V N Kulkarni ◽  
Y N Mohapatra ◽  
D C Agrawal

Sign in / Sign up

Export Citation Format

Share Document