New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations

2006 ◽  
Vol 153 (5) ◽  
pp. 623-626 ◽  
Author(s):  
Z. Zuo ◽  
Y. Wang
2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Jun Li ◽  
Weigen Wu ◽  
Jimin Yuan ◽  
Qianrong Tan ◽  
Xing Yin

This paper deals with the problem of delay-dependent stability criterion of arbitrary switched linear systems with time-varying delay. Based on switched quadratic Lyapunov functional approach and free-weighting matrix approach, some linear matrix inequality criterions are found to guarantee delay-dependent asymptotically stability of these systems. Simultaneously, arbitrary switched linear system can be expressed as a problem of uncertain liner system, so some delay-dependent stability criterions are obtained with the result of uncertain liner system. Two examples illustrate the exactness of the proposed criterions.


2015 ◽  
Vol 08 (03) ◽  
pp. 1550061
Author(s):  
Pornthip Somchai ◽  
Kanit Mukdasai

In this paper, we investigate the problem of robust exponential stability analysis for uncertain linear systems with discrete interval time-varying delay, distributed time-varying delay and nonlinear perturbations. Based on constructing an augmented Lyapunov–Krasovskii functional with some parameter, decomposition technique of coefficient matrix, mixed model transformation with Leibniz–Newton formula and utilization of zero equations, new delay-range-dependent robust exponential stability criteria are derived in terms of linear matrix inequalities (LMIs). Numerical examples are given to show the superiority of our results to those in the literature.


Sign in / Sign up

Export Citation Format

Share Document