Optimisation and sensitivity analysis of GPS receiver tracking loops in dynamic environments

2001 ◽  
Vol 148 (4) ◽  
pp. 241 ◽  
Author(s):  
D.-J. Jwo
2011 ◽  
Vol 64 (S1) ◽  
pp. S151-S161 ◽  
Author(s):  
Sihao Zhao ◽  
Mingquan Lu ◽  
Zhenming Feng

A number of methods have been developed to enhance the robustness of Global Positioning System (GPS) receivers when there are a limited number of visible satellites. Vector tracking is one of them. It utilizes information from all channels to aid the processing of individual channels to generate receiver positions and velocities. This paper analyzes relationships among code phase, carrier frequency, and receiver position and velocity, and presents a vector loop-tracking algorithm using an Extended Kalman filter implemented in a Matlab-based GPS software receiver. Simulated GPS signals are generated to test the proposed vector tracking method. The results show that when some of the satellites are blocked, the vector tracking loop provides better carrier frequency tracking results for the blocked signals and produces more accurate navigation solutions compared with traditional scalar tracking loops.


2001 ◽  
Vol 54 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Dah-Jing Jwo

An integrated GPS/INS navigation system can employ inertial velocity information to produce a more robust system. For a stand-alone GPS receiver, decreasing the receiver tracking loop bandwidth reduces the probability of losing lock in a jamming or interference environment if vehicle dynamics are low. However, reduced bandwidth increases tracking errors when dynamics are present. Beyond a certain limit, it causes a serious degradation in the dynamic tracking loop performance. Providing inertial velocity aiding to the receiver tracking loops is an effective and popular treatment to help resolve this problem. In this paper, performance of the GPS receiver tracking loops using inertial velocity aiding will be investigated. Different types of tracking loops, from 1st to 3rd order, are covered. Following the discussion of the system architecture and derivation of the related transfer functions for the tracking loops, both with and without aiding, the system performance, including transient response, steady-state error, and noise bandwidth is evaluated.


2020 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Aye Su Su Phyo ◽  
Hla Myo Tun ◽  
Atar Mon ◽  
Sao Hone Pha

2009 ◽  
Vol 3 (4) ◽  
pp. 707-715 ◽  
Author(s):  
Todd E. Humphreys ◽  
Mark L. Psiaki ◽  
Joanna C. Hinks ◽  
Brady O'Hanlon ◽  
Paul M. Kintner

Sign in / Sign up

Export Citation Format

Share Document