gps receiver
Recently Published Documents


TOTAL DOCUMENTS

1083
(FIVE YEARS 165)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
Sirish Kumar Pagoti ◽  
Bala Sai Srilatha Indira Dutt Vemuri ◽  
Ganesh Laveti

If any Global Positioning System (GPS) receiver is operated in low latitude regions or urban canyons, the visibility further reduces. These system constraints lead to many challenges in providing precise GPS position accuracy over the Indian subcontinent. As a result, the standalone GPS accuracy does not meet the aircraft landing requirements, such as Category I (CAT-I) Precision Approaches. However, the required accuracy can be achieved by augmenting the GPS. Among all these issues, the predominant factors that significantly influence the receiver position accuracy are selecting a user/receiver position estimation algorithm. In this article, a novel method is proposed based on correntropy and designated as Correntropy Kalman Filter (CKF) for precise GPS applications and GPS Aided Geosynchronous equatorial orbit Augmented Navigation (GAGAN) based aircraft landings over the low latitude Indian subcontinent. The real-world GPS data collected from a dual-frequency GPS receiver located in the southern region of the Indian subcontinent (IISc), Bangalore with Lat/Long: 13.021°N/ 77.5°E) is used for the performance evaluation of the proposed algorithm. Results prove that the proposed CKF algorithm exhibits significant improvement (up to 34%) in position estimation compared to the traditional Kalman Filter.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Maria Mehmood ◽  
Sajid Saleem ◽  
Renato Filjar

The Eyjafjallajökull volcanic ash crisis in 2010 temporarily suspended European air traffic operations, as the 39-day eruption caused widely dispersed ashes to enter the lower atmosphere. In this paper, we assessed the effects of this event on the ionosphere layer and, consequently, on GPS positioning. We collected and analysed the data from four IGS stations, nearest to the volcano, for the month of April 2010. We recorded Vertical Total Electron Content (VTEC) time series, analysed their dynamics, and compared them with the GPS positioning errors of a commercial-grade, un-aided, single-frequency GPS receiver (simulating the response of a mass-market GPS receiver). The geomagnetic indices during the time period show little geomagnetic disturbance, especially during the volcanic event. Our results show an enhancement in ionosphere error by up to 15% during the volcanic ash event and an enhanced variance in GPS position components errors. This study reveals the potential impact of the charged volcanic ash on single-frequency, unaided GPS positioning accuracy in the Adriatic Sea region and establishes a foundation for studying similar events in future.


Author(s):  
ARUL ELANGO ◽  
René Jr Landry

Abstract Abstract: The multipath effect causes severe degradation in the positioning of commercial GPS receivers. Due to multipath error, the positioning accuracy could reach a few 10 meters. If the cumulative Multipath delay is less than 0.1-0.35 chips, then it is difficult to mitigate in GPS receivers. This causes severe degradation in GPS signals and can cause a measurement bias. To alleviate this problem, the estimation of multipath parameters using annihilating filter and its mitigation in the GPS tracking loop is proposed in this work. The estimation of randomly generated multipath signals can be performed in the receiver with a lower sampling rate when compared to the larger bandwidth of the GPS baseband signal. Here, the frequency components of the Multipath signal in superimposed complex exponentials have been transformed from the time delay and the amplitude of the path observables. The Rayleigh fading model in the urban scenario has been simulated in which the amplitude and the phase of the number of paths (i.e., the frequency component of superimposed complex exponentials) are set and this fading signal is convolved with GPS signal that forms the multipath faded signal. In the GPS receiver post-processing stage, with the help of the annihilation filter, the multipath components are estimated, then an inverse/adaptive filter and compensation technique are further applied to mitigate the multipath component. The mean square error with the different number of paths with noisy environments is analyzed utilizing the cadzaw denoising algorithm. The simulation results of the proposed technique employed in the tracking module of the software GPS receiver under severe multipath conditions indicate a substantial enhancement in the performance of the GPS receiver with minimal code and carrier phase error when compared to the least squares and adaptive blind equalization channel techniques. Moreover, the positioning accuracy is also calculated with the inclusion of multipath components in two satellites out of six satellites used in the simulation, the results showed that the annihilation filter improved the mean position accuracy up to 9.3023 meters.


Author(s):  
Ibrahim Abba ◽  
◽  
Salisu Muhammad ◽  
Lawan Bashir D. Bala ◽  
Emmanuel Joseph ◽  
...  

Lack of equipment to study mobile satellites signal propagation in colleges and universities prone this research work. A Handheld GPS receiver used as a tool for training college students to learn mobile satellite signal propagation using Global Positioning System (GPS) approach. These refer to the experimental setup of the equipment that is the connection done between the GPS receiver with a computer. The satellite propagation data received from the GPS machine can be recorded continuously with an updates rate of 2 seconds. The experiment was carried out in an open space environment at predetermine locations using simple setup, where a cheap, readily and available portable GPS receiver were connected to the computer to acquire propagation data. The computer was equipped with a self-developed package graphical user interface (GUI) monitoring the propagation information from the GPS satellites and saving the data. The developed system can be set up anywhere at any location. The sate-up will serve as a database for satellites view and analysis of mobile satellite data orbiting the sky of Northern part of Nigeria. Cost effective referring to a low-cost and readily available GPS receiver that can be easily set-up as compared to equipment designed specifically for an experimental purpose that is normally very expensive.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8304
Author(s):  
Jose-María Sierra-Fernández ◽  
Olivia Florencias-Oliveros ◽  
Manuel-Jesús Espinosa-Gavira ◽  
Juan-José González-de-la-Rosa ◽  
Agustín Agüera-Pérez ◽  
...  

This article proposes a measurement solution designed to monitor the instantaneous frequency in power systems. It uses a data acquisition module and a GPS receiver for time stamping and traceability. A Python-based module receives data, computes the frequency, and finally transfers the measurement results to a database. The frequency is calculated with two different methods, which are compared in the article. The stored data is visualized using the Grafana platform, thus demonstrating its potential for comparing scientific data. The system as a whole constitutes an efficient, low-cost solution as a data acquisition system.


Author(s):  
Wei-Lung Mao ◽  
Chorng-Sii Hwang ◽  
Chung-Wen Hung ◽  
Jyh Sheen

The global positioning system (GPS) provides accurate positioning and timing information that is useful in various civil and military applications. The adaptive filtering predictor for GPS jamming suppression applications is proposed. This research uses the gLab-G software to substitute for the hardware receiver to record the GPS signal waveform. The normalized least-mean-square (NLMS) and set-membership NLMS (SM-NLMS) filtering methods are employed for continuous wave interference suppression. Simulation results reveal that our proposed methods can provide the better performances when the interference-to-noise ratios (INR) are varied from 20 to 50 dB. The anti-jamming performances are evaluated via extensive simulation by computing mean squared prediction error (MSPE) and signal-to-noise ratio (SNR) improvements.


2021 ◽  
Vol 64 (4) ◽  
pp. RS440
Author(s):  
Aghyas Aljuneidi ◽  
Hala Tawfek Hasan

This paper focuses on the approximations that John A. Klobuchar made in mid 70s in his famous algorithm of ionospheric correction model for single frequency GPS receiver. At that time Klobuchar used a system of fixed geomagnetic north pole coordinates which are not accurate nowadays according to the International Geomagnetic Reference Field and to the World Magnetic Model because the geomagnetic poles move slowly. In addition, Klobuchar had to do other trigonometry simplifications in his implementation to avoid sophisticated computations. In order to evaluate this approximate implementation in a single frequency GPS receiver, ionospheric time and range delay are estimated on the entire day of January 1st 2010, using a different implementation in MATLAB. The required GPS data is obtained from recorded RINEX files at UDMC near DAMASCUS, SYRIA. In this comparative study, we reformulated the standard equations of Klobuchar model and examined the influence of its approximations on the ionospheric range delay and found a non- negligible bias in order of ten centimeters, whereas the influence of the movement of the geomagnetic poles was in order of few centimeters.


Heliyon ◽  
2021 ◽  
pp. e08330
Author(s):  
Salsabeel E. Othman ◽  
Gerges M. Salama ◽  
Hesham.F.A. Hamed

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7232
Author(s):  
Michal Vorlíček ◽  
Tom Stewart ◽  
Jasper Schipperijn ◽  
Jaroslav Burian ◽  
Lukáš Rubín ◽  
...  

In order to study the relationship between human physical activity and the design of the built environment, it is important to measure the location of human movement accurately. In this study, we compared an inexpensive GPS receiver (Holux RCV-3000) and a frequently used Garmin Forerunner 35 smart watch, with a device that has been validated and recommended for physical activity research (Qstarz BT-Q1000XT). These instruments were placed on six geodetic points, which represented a range of different environments (e.g., residential, open space, park). The coordinates recorded by each device were compared with the known coordinates of the geodetic points. There were no differences in accuracy among the three devices when averaged across the six sites. However, the Garmin was more accurate in the city center and the Holux was more accurate in the park and housing estate areas compared to the other devices. We consider the location accuracy of the Holux and the Garmin to be comparable to that of the Qstarz. Therefore, we consider these devices to be suitable instruments for locating physical activity. Researchers must also consider other differences among these devices (such as battery life) when determining if they are suitable for their research studies.


Sign in / Sign up

Export Citation Format

Share Document