scholarly journals Imprint of the galactic acceleration scale on globular cluster systems

2019 ◽  
Vol 629 ◽  
pp. L5 ◽  
Author(s):  
M. Bílek ◽  
S. Samurović ◽  
F. Renaud

We report that the density profiles of globular cluster (GC) systems in a sample of 17 early-type galaxies (ETGs) show breaks at the radii where the gravitational acceleration exerted by the stars equals the galactic acceleration scale a0 known from the radial acceleration relation or the modified Newtonian dynamics (MOND). The match with the other characteristic radii in the galaxy is not that close. We propose possible explanations in the frameworks of the Lambda cold dark matter (ΛCDM) model and MOND. We find tentative evidence that in the ΛCDM context, GCs reveal not only the masses of the dark halos through the richness of the GC systems but also the concentrations through the break radii of the GC systems.

2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


Author(s):  
Gabriele U Varieschi

Abstract We continue our analysis of Newtonian Fractional-Dimension Gravity, an extension of the standard laws of Newtonian gravity to lower dimensional spaces including those with fractional (i.e., non-integer) dimension. We apply our model to three rotationally supported galaxies: NGC 7814 (Bulge-Dominated Spiral), NGC 6503 (Disk-Dominated Spiral), and NGC 3741 (Gas-Dominated Dwarf). As was done in the general cases of spherically-symmetric and axially-symmetric structures, which were studied in previous work on the subject, we examine a possible connection between our model and Modified Newtonian Dynamics, a leading alternative gravity model which explains the observed properties of these galaxies without requiring the Dark Matter hypothesis. In our model, the MOND acceleration constant a0 ≃ 1.2 × 10−10m s−2 can be related to a natural scale length l0, namely $a_{0} \approx GM/l_{0}^{2}$ for a galaxy of mass M. Also, the empirical Radial Acceleration Relation, connecting the observed radial acceleration gobs with the baryonic one gbar, can be explained in terms of a variable local dimension D. As an example of this methodology, we provide detailed rotation curve fits for the three galaxies mentioned above.


2020 ◽  
Vol 497 (2) ◽  
pp. 2393-2417 ◽  
Author(s):  
Alexandres Lazar ◽  
James S Bullock ◽  
Michael Boylan-Kolchin ◽  
T K Chan ◽  
Philip F Hopkins ◽  
...  

ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $0.5{{\ \rm per\ cent}}$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$) to the largest spirals ($M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $\gtrsim 100\ \rm pc$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation.


1987 ◽  
Vol 117 ◽  
pp. 319-333
Author(s):  
Mordehai Milgrom ◽  
Jacob Bekenstein

The mass discrepancy, which has led to the notion of dark matter may, in fact, be due to a breakdown of the Newtonian laws which are used to determine the masses of galactic systems. We describe a nonrelativistic theory which departs from Newton's in the limit of small accelerations. When one uses the modified dynamics to deduce gravitational masses, the need to invoke large quantities of dark matter disappears. We outline the theory and give criteria for deciding which systems are expected to exhibit marked departures from Newtonian behaviour. The main body of the talk is a succinct description of the major predictions of the theory regarding dynamics within galaxies.


Author(s):  
James Binney

In cuspy atmospheres, jets driven by supermassive black holes (BHs) offset radiative cooling. The jets fire episodically, but often enough that the cuspy atmosphere does not move very far towards a cooling catastrophe in the intervals of jet inactivity. The ability of energy released on the sub–parsec scale of the BH to balance cooling on scales of several tens of kiloparsecs arises through a combination of the temperature sensitivity of the accretion rate and the way in which the radius of jet disruption varies with ambient density. Accretion of hot gas does not significantly increase BH masses, which are determined by periods of rapid BH growth and star formation when cold gas is briefly abundant at the galactic centre. Hot gas does not accumulate in shallow potential wells. As the Universe ages, deeper wells form, and eventually hot gas accumulates. This gas soon prevents the formation of further stars, since jets powered by the BH prevent it from cooling, and it mops up most cold infalling gas before many stars can form. Thus, BHs set the upper limit to the masses of galaxies. The formation of low–mass galaxies is inhibited by a combination of photoheating and supernova–driven galactic winds. Working in tandem, these mechanisms can probably explain the profound difference between the galaxy luminosity function and the mass function of dark haloes expected in the cold dark matter cosmology.


2020 ◽  
Vol 501 (1) ◽  
pp. 179-200 ◽  
Author(s):  
Khyati Malhan ◽  
Monica Valluri ◽  
Katherine Freese

ABSTRACT The steepness of the central density profiles of dark matter (DM) in low-mass galaxy haloes (e.g. dwarf galaxies) is a powerful probe of the nature of DM. We propose a novel scheme to probe the inner profiles of galaxy subhaloes using stellar streams. We show that the present-day morphological and dynamical properties of accreted globular cluster (GC) streams – those produced from tidal stripping of GCs that initially evolved within satellite galaxies and later merged with the Milky Way (MW) – are sensitive to the central DM density profile and mass of their parent satellites. GCs that accrete within cuspy cold dark matter (CDM) subhaloes produce streams that are physically wider and dynamically hotter than streams that accrete inside cored subhaloes. A first comparison of MW streams ‘GD-1’ and ‘Jhelum’ (likely of accreted GC origin) with our simulations indicates a preference for cored subhaloes. If these results hold up in future data, the implication is that either the DM cusps were erased by baryonic feedback, or their subhaloes naturally possessed cored density profiles implying particle physics models beyond CDM. Moreover, accreted GC streams are highly structured and exhibit complex morphological features (e.g. parallel structures and ‘spurs’). This implies that the accretion scenario can naturally explain the recently observed peculiarities in some of the MW streams. We also propose a novel mechanism for forming ‘gaps’ in stellar streams when the remnant of the parent subhalo (which hosted the GC) later passes through the GC stream. This encounter can last a longer time (and have more of an impact) than the random encounters with DM subhaloes previously considered, because the GC stream and its parent subhalo are on similar orbits with small relative velocities. Current and future surveys of the MW halo will uncover numerous faint stellar streams and provide the data needed to substantiate our preliminary tests with this new probe of DM.


Author(s):  
Nirod K. Das

A unified electro-gravity (UEG) theory, which has been successfully used for modeling an elementary particle, is applied in this paper to model gravitation in spiral galaxies. The new UEG model would explain the “flat rotation curves” commonly observed in the spiral galaxies, without need for any hypothetical dark matter. The UEG theory is implemented in a somewhat different manner for a spiral galaxy, as compared to the simple application of the UEG theory to an elementary particle. This is because the spiral galaxy, unlike the elementary particle, is not spherically symmetric. The UEG constant $\gamma$, required in the new model to support the galaxies' flat rotation speeds, is estimated using measured data from a galaxy survey, as well as for a selected galaxy for illustration. The estimates are compared with the $\gamma$ derived from the UEG model of an elementary particle. The UEG model for the galaxy is shown to explain the empirical Tully-Fisher Relationship (TFR), is consistent with the Modified Newtonian Dynamics (MOND), and is also independently supported by measured trends of galaxy thickness with surface brightness and rotation speed.


Sign in / Sign up

Export Citation Format

Share Document