hot gas
Recently Published Documents


TOTAL DOCUMENTS

2520
(FIVE YEARS 273)

H-INDEX

63
(FIVE YEARS 10)

2022 ◽  
Vol 924 (1) ◽  
pp. 24
Author(s):  
Yutaka Fujita ◽  
Nozomu Kawakatu ◽  
Hiroshi Nagai

Abstract Massive molecular gas has been discovered in giant elliptical galaxies at the centers of galaxy clusters. To reveal its role in active galactic nucleus (AGN) feedback in those galaxies, we construct a semianalytical model of gas circulation. This model especially focuses on the massive molecular gas (interstellar cold gas on a scale of ∼10 kpc) and the circumnuclear disk (≲0.5 kpc). We consider the destruction of the interstellar cold gas by star formation and the gravitational instability for the circumnuclear disk. Our model can reproduce the basic properties of the interstellar cold gas and the circumnuclear disk, such as their masses. We also find that the circumnuclear disk tends to stay at the boundary between stable and unstable states. This works as an “adjusting valve” that regulates mass accretion toward the supermassive black hole. On the other hand, the interstellar cold gas serves as a “fuel tank” in the AGN feedback. Even if the cooling of the galactic hot gas is prevented, the interstellar cold gas can sustain the AGN activity for ≳0.5 Gyr. We also confirm that the small entropy of hot gas (≲30 keV cm2) or the short cooling time (≲1 Gyr) is a critical condition for the existence of massive amounts of molecular gas in the galaxy. The dissipation time of the interstellar cold gas may be related to the critical cooling time. The galaxy behavior is described by a simple relation among the disk stability, the cloud dissipation time, and the gas cooling rate.


2021 ◽  
Vol 163 (1) ◽  
pp. 35
Author(s):  
Hayley Beltz ◽  
Emily Rauscher ◽  
Michael T. Roman ◽  
Abigail Guilliat

Abstract Ultrahot Jupiters represent an exciting avenue for testing extreme physics and observing atmospheric circulation regimes not found in our solar system. Their high temperatures result in thermally ionized particles embedded in atmospheric winds interacting with the planet’s interior magnetic field by generating current and experiencing bulk Lorentz force drag. Previous treatments of magnetic drag in 3D general circulation models (GCMs) of ultrahot Jupiters have mostly been uniform drag timescales applied evenly throughout the planet, which neglects the strong spatial dependence of these magnetic effects. In this work, we apply our locally calculated active magnetic drag treatment in a GCM of the planet WASP-76b. We find the effects of this treatment to be most pronounced in the planet’s upper atmosphere, where strong differences between the day and night side circulation are present. These circulation effects alter the resulting phase curves by reducing the hot spot offset and increasing the day–night flux contrast. We compare our models to Spitzer phase curves, which imply a magnetic field of at least 3 G for the planet. We additionally contrast our results to uniform drag timescale models. This work highlights the need for more careful treatment of magnetic effects in atmospheric models of hot gas giants.


2021 ◽  
Author(s):  
Ming Sun ◽  
Chong Ge ◽  
Rongxin Luo ◽  
Masafumi Yagi ◽  
Pavel Jáchym ◽  
...  

2021 ◽  
pp. 35-52
Author(s):  
Jessie Beier

AbstractIn April 2019, the Event Horizon Telescope (EHT) project released an unprecedented image of a supermassive black hole at the centre of galaxy Messier 87. The image, which shows a dark disc outlined by swirling hot gas circling the black hole’s event horizon, exhibits a 55 million-year-old cosmic event in the Virgo galaxy cluster—a void of stellar mass measuring some 6.5 billion times that of our sun. Situated within today’s (Good) Anthropocene scenario, characterized as it is by both the rise of an inhospitable planet but also a range of good vibes and affirmative mantras, this tracing explores this newly “discovered” black hole in terms of the unthinkable questions and speculative trajectories it raises for education and its futures. Through a series of forays into astrophysics, historical examples of cosmic imaging, and further exploration of the image created by EHT, this tracing outlines the black hole and its apparent horizons in order to propose a strange vantage point from which pedagogical problem-posing might be interrupted, mutated, and relaunched. By turning to that which lies outside of the traditional science classroom—beyond the school, beyond curriculum, indeed, beyond the planet itself—this tracing seeks to probe this black hole event in terms of its weird and weirding pedagogical trajectories so as to speculate on unthought possibilities for resituating (science) education in the age of the Anthropocene.


2021 ◽  
Vol 923 (1) ◽  
pp. 95
Author(s):  
Man Ho Chan

Abstract Galaxy clusters are good targets for examining our understanding of cosmology. Apart from numerical simulations and gravitational lensing, X-ray observation is the most common and conventional way to analyze the gravitational structures of galaxy clusters. Therefore, it is valuable to have simple analytical relations that can connect the observed distribution of the hot, X-ray-emitting gas to the structure of the dark matter in the clusters as derived from simulations. In this article, we apply a simple framework that can analytically connect the hot gas empirical parameters with the standard parameters in the cosmological cold dark matter model. We have theoretically derived two important analytic relations, r s ≈ 3 r c and ρ s ≈ 9 β kT / 8 π Gm g r c 2 , which can easily relate the dark matter properties in galaxy clusters with the hot gas properties. This can give a consistent picture describing gravitational astrophysics for galaxy clusters by the hot gas and cold dark matter models.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Simona Giacintucci ◽  
Tracy Clarke ◽  
Namir E. Kassim ◽  
Wendy Peters ◽  
Emil Polisensky

We present VLA Low-band Ionosphere and Transient Experiment (VLITE) 338 MHz observations of the galaxy cluster CL 0838+1948. We combine the VLITE data with Giant Metrewave Radio Telescope 610 MHz observations and survey data. The central galaxy hosts a 250 kpc source whose emission is dominated by two large lobes at low frequencies. At higher frequencies, a pair of smaller lobes (∼30 kpc) is detected within the galaxy optical envelope. The observed morphology is consistent with a restarted radio galaxy. The outer lobes have a spectral index αout=1.6, indicating that they are old, whereas the inner lobes have αinn=0.6, typical for an active source. Spectral modeling confirms that the outer emission is a dying source whose nuclear activity switched off not more than 110 Myr ago. Using archival Chandra X-ray data, we compare the radio and hot gas emission. We find that the active radio source is contained within the innermost and X-ray brightest region, possibly a galactic corona. Alternatively, it could be the remnant of a larger cool core whose outer layers have been heated by the former epoch of activity that has generated the outer lobes.


Sign in / Sign up

Export Citation Format

Share Document