scholarly journals Rotational spectroscopy and astronomical search for glutaronitrile

2020 ◽  
Vol 636 ◽  
pp. A33
Author(s):  
C. Cabezas ◽  
C. Bermúdez ◽  
Y. Endo ◽  
B. Tercero ◽  
J. Cernicharo

Context. Nitriles constitute almost 15% of the molecules observed in the interstellar medium (ISM), surprisingly only two dinitriles have been detected in the ISM so far. The lack of astronomical detections for dinitriles may be partly explained by the absence of laboratory rotational spectroscopic data. Aims. Our goal is to investigate the rotational spectrum of glutaronitrile, N≡C−CH2−CH2−CH2−C≡N, in order to allow its possible detection in the ISM. Methods. The rotational spectrum of glutaronitrile was measured using two different experimental setups. A Fourier transform microwave spectrometer was employed to observe the supersonic jet rotational spectrum of glutaronitrile between 6 and 20 GHz. In addition, the mmW spectrum was observed in the frequency range 72−116.5 GHz using a broadband millimetre-wave spectrometer based on radio astronomy receivers with fast Fourier transform backends. The spectral searches were supported by high-level ab initio calculations. Results. A total of 111 rotational transitions with maximum values of J and Ka quantum numbers 54 and 18, respectively, were measured for the gg conformer of glutaronitrile. The analysis allowed us to accurately determine the rotational, nuclear quadrupole coupling, quartic and sextic centrifugal distortion constants. These rotational parameters were employed to search for glutaronitrile in the cold and warm molecular clouds Orion KL, Sgr B2(N), B1-b and TMC-1, using the spectral surveys captured by IRAM 30 m at 3 mm. Glutaronitrile was not detected, and the upper limits’ column densities were derived. Those are a factor of 1.5 and 5 lower than those obtained for the total column densities of the analogous succinonitrile in Orion KL and Sgr B2, respectively.

1993 ◽  
Vol 48 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling of thiazole- 33S in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8529.29268 (70) MHz, B = 5427.47098 MHz, and C = 3315.21676 (26) MHz, quartic centrifugal distortion constants and the quadrupole coupling constants of 33S χaa = 7.1708 (61) MHz and χbb= -26.1749 (69) MHz and of 14N χ aa = -2.7411 (61) MHz and χbb = 0.0767 (69) MHz.


1994 ◽  
Vol 49 (11) ◽  
pp. 1063-1066
Author(s):  
S. R. Huber ◽  
A. Bauder

Abstract The rotational spectrum of N-methylpyrrole has been measured with pulsed nozzle Fourier transform microwave spectrometers between 6 and 38 GHz. The quadrupole hyperfine structure due to 14N has been reanalyzed in the A (m = 0) state o f the methyl internal rotation. Improved rotational constants, centrifugal distortion constants, and quadrupole coupling constants have been simultaneously determined from the measured transition frequencies in an iterative least-squares fit.


1994 ◽  
Vol 49 (11) ◽  
pp. 1059-1062
Author(s):  
J. Gripp ◽  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling in the rotational spectrum of isothiazole in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8275.51880(80) MHz, B = 5767.06181 (40) MHz, and C = 3396.85702(36) MHz, quartic centrifugal distortion constants, and the quadrupole coupling constants χaa (33S) = 8.7015 (57) MHz, χbb(33S) = -32.9696(60) MHz, χaa(14N) = 1.0732(47) MHz and χbb(14N) = -2.4753(46) MHz.


1988 ◽  
Vol 43 (5) ◽  
pp. 469-475 ◽  
Author(s):  
Ch. Keussen ◽  
U. Andresen ◽  
H. Dreizler

We investigated the 14N quadrupole coupling of three rotational isomers of ethyl nitrite in the ground state by microwave Fourier transform spectroscopy. Centrifugal distortion analyses were necessary to assign the transitions with high J quantum numbers. We found an additional splitting of some c-type transitions of the trans-gauche rotamer presumably arising from tunneling through the barrier separating the two equivalent gauche forms. This assumption could not be confirmed yet.


1985 ◽  
Vol 63 (9) ◽  
pp. 1173-1183 ◽  
Author(s):  
Udai P. Verma ◽  
Klaus Möller ◽  
Jürgen Vogt ◽  
Manfred Winnewisser ◽  
Jørn Johs. Christiansen

The rotational spectrum of diazirine-d2, [Formula: see text], has been recorded in the ranges 8–40 and 100–400 GHz. The hyperfine structure of the measured rotational lines has been analyzed. The analysis required the treatment of two pairs of equivalent nuclei, which is discussed in detail. The deduced deuterium nuclear-quadrupole coupling constants are[Formula: see text]The quadrupole coupling constants of the nitrogen nuclei[Formula: see text]are taken from the parent species, and the spin-rotation coupling constants are[Formula: see text]The rotational and centrifugal distortion constants have been obtained for the ground vibrational state from the analysis of the unperturbed line positions. The complete rs structure of diazirine has been determined using the rotational constants of all available isotopomers of diazirine. The internuclear distances are rs(C—N) = 148.13(24) pm, rs(C—H) = 108.03(29) pm, and rs(N—N) = 122.80(25) pm, and the bond angles are [Formula: see text] and [Formula: see text], with the HCH plane perpendicular to the NCN plane.


1984 ◽  
Vol 62 (12) ◽  
pp. 1217-1225 ◽  
Author(s):  
Klaus Möller ◽  
Jürgen Vogt ◽  
Manfred Winnewisser ◽  
JØrn Johs. Christiansen

The rotational spectrum of 13C isotopically enriched diazirine, H213C14N2, has been recorded in the region between 12 and 250 GHz. From an analysis of the nuclear hyperfine structure of the rotational transitions, quadrupole coupling and spin-rotational constants have been determined. Using Watson's A-reduced Hamiltonian, the rotational constants, the quartic and some sextic centrifugal distortion constants have been obtained for the ground vibrational state. The rotational constants obtained are[Formula: see text]The nuclear quadrupole coupling constants and the spin-rotation constants are[Formula: see text]for the two identical quadrupolc nitrogen nuclei. The accuracy of the constants obtained allows us to evaluate the line positions and hyperfine structure of any rotational transition in the microwave and millimetre wave region.


2020 ◽  
Vol 640 ◽  
pp. A98 ◽  
Author(s):  
L. Bizzocchi ◽  
D. Prudenzano ◽  
V. M. Rivilla ◽  
A. Pietropolli-Charmet ◽  
B. M. Giuliano ◽  
...  

Context. Small imines containing up to three carbon atoms are present in the interstellar medium (ISM). As alkynyl compounds are abundant in this medium, propargylimine (2-propyn-1-imine, HC ≡C−CH =NH) thus represents a promising candidate for a new interstellar detection. Aims. The goal of the present work is to perform a comprehensive laboratory investigation of the rotational spectrum of propargylimine in its ground vibrational state in order to obtain a highly precise set of rest frequencies and to search for it in space. Methods. The rotational spectra of E and Z geometrical isomers of propargylimine have been recorded in the laboratory in the 83–500 GHz frequency interval. The measurements have been performed using a source-modulation millimetre-wave spectrometer equipped with a pyrolysis system for the production of unstable species. High-level ab initio calculations were performed to assist the analysis and to obtain reliable estimates for an extended set of spectroscopic quantities. We searched for propargylimine at 3 mm and 2 mm in the spectral survey of the quiescent giant molecular cloud G+0.693-0.027 located in the central molecular zone, close to the Galactic centre. Results. About 1000 rotational transitions have been recorded for the E- and Z-propargylimine, in the laboratory. These new data have enabled the determination of a very accurate set of spectroscopic parameters including rotational, quartic, and sextic centrifugal distortion constants. The improved spectral data allowed us to perform a successful search for this new imine in the G+0.693-0.027 molecular cloud. Eighteen lines of Z-propargylimine were detected at level >2.5σ, resulting in a column-density estimate of N = (0.24 ± 0.02) × 1014 cm−2. An upper limit was retrieved for the higher energy E isomer, which was not detected in the data. The fractional abundance (with respect to H2) derived for Z-propargylimine is 1.8 × 10−10. We discuss the possible formation routes by comparing the derived abundance with those measured in the source for possible chemical precursors.


2019 ◽  
Vol 629 ◽  
pp. A35 ◽  
Author(s):  
C. Cabezas ◽  
C. Bermúdez ◽  
J. D. Gallego ◽  
B. Tercero ◽  
J. M. Hernández ◽  
...  

Context. Dinitriles with a saturated hydrocarbon skeleton and a −C≡N group at each end can have large electric dipole moments. Their formation can be related to highly reactive radicals such as CH2CN, C2N, or CN. Thus, these saturated dinitriles are potential candidates to be observed in the interstellar medium (ISM). Aims. Our goal is the investigation of the rotational spectrum of one of the simplest dinitriles N≡C−CH2−CH2−C≡N, succinonitrile, whose actual rotational parameters are not precise enough to allow its detection in the ISM. In addition, the rotational spectra for its vibrational excited states will be analysed. Methods. The rotational spectra of succinonitrile was measured in the frequency range 72−116.5 GHz using a new broadband millimeter-wave spectrometer based on radio astronomy receivers with Fast Fourier Transform backends. The identification of the vibrational excited states of succinonitrile was supported by high-level ab initio calculations on the harmonic and anharmonic force fields. Results. A total of 459 rotational transitions with maximum values of J and Ka quantum numbers 70 and 14, respectively, were measured for the ground vibrational state of succinonitrile. The analysis allowed us to accurately determine the rotational, quartic, and sextic centrifugal distortion constants. Up to eleven vibrational excited states, resulting from the four lowest frequency vibrational modes ν13, ν12, ν24, and ν23 were identified. In addition to the four fundamental modes, we observed overtones together with some combination states. The rotational parameters for the ground state were employed to unsuccessfully search for succinonitrile in the cold and warm molecular clouds Orion KL, Sgr B2(N), B1-b, and TMC-1, using the spectral surveys captured by IRAM 30 m at 3 mm and the Yebes 40 m at 1.3 cm and 7 mm.


1991 ◽  
Vol 46 (11) ◽  
pp. 989-992 ◽  
Author(s):  
N. Heineking ◽  
J.-U. Grabow ◽  
K. Vormann ◽  
W. Stahl

AbstractNuclear quadrupole hyperfine structures have been resolved in the rotational spectrum of thionyl aniline, C6H5NSO, using pulsed molecular beam microwave Fourier transform spectroscopy. High precision nuclear quadrupole coupling constants, rotational and quartic centrifugal distortion constants have been determined from the analysis of 12 low-J transitions. Coupling constants are χaa = + 1.5730(14) MHz and (χbb - χcc)= -5.6499(13) MHz. rotational constants are A-4026.72i5(4) MHz, B = 860.64732(8) MHz, and C = 709.52027(7) MHz, and centrifugal distortion constants are ΔJ - 36.6(5) Hz, ΔJK= -107.5(20) Hz, ΔK = 703(68) Hz, δJ = 8.1(5) Hz, and δK=111(19) Hz (representation I' used).


1995 ◽  
Vol 50 (2-3) ◽  
pp. 131-136 ◽  
Author(s):  
H. Hartwig ◽  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the rotational spectrum of 32S, 33S dimethyl disulfide in natural abundance by molecular beam Fourier transform microwave spectroscopy. We were able to determine the com­plete 33S quadrupole coupling tensor, the rotational and centrifugal distortion constants and the internal rotation parameters of the two methyl tops. The rotational constants were found to be A = 8113.8847(23) MHz, B = 2800.6203(30) MHz and C = 2557.2245 (32) MHz. The results are compared with former publications.


Sign in / Sign up

Export Citation Format

Share Document