rotational transition
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 23)

H-INDEX

26
(FIVE YEARS 5)

2021 ◽  
Vol 11 (24) ◽  
pp. 11875
Author(s):  
Chencheng Shen ◽  
Xianglong Cai ◽  
Tiancheng Zheng ◽  
Yuxi Jia ◽  
Dong Liu ◽  
...  

We demonstrated mid-infrared gaseous stimulated Raman scattering lasers in free space. Mixed gases of hydrogen and deuterium were used as Raman gain media in one Raman cell. Pumped by laser pulses at 1064 nm, the first Stokes Raman components at 1560 nm and 1907 nm were generated. A four-wave mixing process with the pump laser at 1064 nm and Raman lasers at 1560 nm and 1907 nm contributed to dramatically reducing the threshold of mid-IR laser generation at 4432 nm. The maximum output peak power of a mid-IR laser at 4432 nm reached 121 kW. Furthermore, by scattering on the rotational transition of deuterium, multispectral mid-IR Raman lasers at wavelengths of 2071 nm, 2266 nm, 2604 nm, 2920 nm, 3322 nm, 3743 nm, 4432 nm, and 5431 nm were also generated. Our results show that this is a convenient method to reduce the threshold and achieve a high power output with mid-IR Raman lasers.


2021 ◽  
pp. 111447
Author(s):  
Oskar Asvany ◽  
Charles R. Markus ◽  
Anthony Roucou ◽  
Stephan Schlemmer ◽  
Sven Thorwirth ◽  
...  

2021 ◽  
Vol 646 ◽  
pp. L1
Author(s):  
C. Cabezas ◽  
Y. Endo ◽  
E. Roueff ◽  
N. Marcelino ◽  
M. Agúndez ◽  
...  

Our observations of TMC-1 with the Yebes 40 m radio telescope in the 31.0–50.3 GHz range allowed us to detect a group of unidentified lines, showing a complex line pattern indicative of an open-shell species. The observed frequencies of these lines and the similarity of the spectral pattern with that of the 20, 2–10, 1 rotational transition of H2CCN indicate that the lines arise from the deuterated cyanomethyl radical, HDCCN. Using Fourier transform microwave spectroscopy experiments combined with electric discharges, we succeeded in producing the radical HDCCN in the laboratory and observed its 10, 1–00, 0 and 20, 2–10, 1 rotational transitions. From our observations and assuming a rotational temperature of 5 K, we derive an abundance ratio H2CCN/HDCCN = 20 ± 4. The high abundance of the deuterated form of H2CCN is well accounted for by a standard gas-phase model, in which deuteration is driven by deuteron transfer from the H2D+ molecular ion.


2021 ◽  
Author(s):  
Masanori Takeda ◽  
Hideaki Nakajima ◽  
Isao Murata ◽  
Tomoo Nagahama ◽  
Isamu Morino ◽  
...  

Abstract. We have developed a procedure for retrieving atmospheric abundances of HFC-23 (CHF3) with a ground-based Fourier transform infrared spectrometer (FTIR) and analysed the spectra observed at Rikubetsu, Japan (43.5° N, 143.8° E), and at Syowa Station, Antarctica (69.0° S, 39.6° E). The FTIR retrievals were carried out with the SFIT4 retrieval program, and the two spectral windows of 1138.5–1148.0 cm−1 and 1154.0–1160.0 cm−1 in the overlapping ν2 and ν5 vibrational-rotational transition bands of HFC-23 were used to avoid strong H2O absorption features. We considered O3, N2O, CH4, H2O, HDO, CFC-12 (CCl2F2), HCFC-22 (CHClF2), PAN (CH3C(O)OONO2), HCFC-141b (CH3CCl2F), and HCFC-142b (CH3CClF2) as interfering species. Vertical profiles of H2O, HDO, and CH4 are preliminarily retrieved with other independent spectral windows because these profiles may induce large uncertainties in the HFC-23 retrieval. Each HFC-23 retrieval has only one piece of vertical information with sensitivity to HFC-23 in the troposphere and the lower stratosphere. The retrieval errors mainly arise from the systematic uncertainties of the spectroscopic parameters used to obtain the HFC-23, H2O, HDO, and CH4 abundances. For comparison between FTIR-retrieved HFC-23 total columns and surface dry-air mole fractions provided by AGAGE (Advanced Global Atmospheric Gases Experiment), the FTIR-retrieved HFC-23 dry-air column-averaged mole fractions (XHFC-23) were calculated. The FTIR-retrieved XHFC-23 at Rikubetsu and Syowa Station have negative biases compared to AGAGE datasets. The trend derived from the FTIR-retrieved XHFC-23 data at Rikubetsu for December to February (DJF) data over the 1997–2010 period is 0.817 ± 0.087 ppt (parts per trillion) year−1, which is in good agreement with the trend derived from the annual global mean datasets of the AGAGE 12-box model for the same period (0.820 ± 0.011 ppt year−1). The trend of the FTIR-retrieved XHFC-23 data at Rikubetsu for DJF data over the 2007–2020 period is 0.894 ± 0.099 ppt year−1, which is smaller than the trend in the AGAGE in-situ measurements at Trinidad Head (41.1° N, 124.2° W) for the 2007–2019 period (0.984 ± 0.002 ppt year−1). The trend computed from the XHFC-23 datasets at Syowa Station over the 2007–2016 period is 0.823 ± 0.075 ppt year−1, which is consistent with that derived from the AGAGE in-situ measurements at Cape Grim (40.7° S, 144.7° E) for the same period (0.874 ± 0.002 ppt year−1). Although there are systematic biases on the FTIR-retrieved XHFC-23 at both sites, these results indicate that ground-based FTIR observations have the capability to monitor the trend of atmospheric HFC-23.


2020 ◽  
Vol 644 ◽  
pp. A29
Author(s):  
E. Redaelli ◽  
L. Bizzocchi ◽  
P. Caselli

Context. The nitrogen isotopic ratio is considered an important diagnostic tool of the star formation process, and N2H+ is particularly important because it is directly linked to molecular nitrogen N2. However, theoretical models still do not provide an exhaustive explanation for the observed 14N/15N values. Aims. Recent theoretical works suggest that the 14N/15N behaviour is dominated by two competing reactions that destroy N2H+: dissociative recombination and reaction with CO. When CO is depleted from the gas phase, if the N2H+ recombination rate is lower with respect to that for N15NH+, the rarer isotopologue is destroyed more quickly. In prestellar cores, due to a combination of low temperatures and high densities, most CO is frozen in ices onto the dust grains, leading to high levels of depletion. On the contrary, in protostellar cores, where temperature are higher, CO ices evaporate back to the gas phase. This implies that the N2H+ isotopic ratio in protostellar cores should be lower than that in prestellar cores, and consistent with the elemental value of ≈440. We aim to test this hypothesis, producing the first sample of N2H+∕N15NH+ measurements in low-mass protostars. Methods. We observe the N2H+ and N15NH+ lowest rotational transition towards six young stellar objects in the Perseus and Taurus molecular clouds. We model the spectra with a custom python code using a constant Tex approach to fit the observations. We discuss in the Appendix the validity of this hypothesis. The derived column densities are used to compute the nitrogen isotopic ratios. Results. Our analysis yields an average of 14N/15N|pro = 420 ± 15 in the protostellar sample. This is consistent with the protosolar value of 440, and significantly lower than the average value previously obtained in a sample of prestellar objects. Conclusions. Our results are in agreement with the hypothesis that, when CO is depleted from the gas-phase, dissociative recombinations with free electrons destroy N15NH+ faster than N2H+, leading to high isotopic ratios in prestellar cores where carbon monoxide is frozen onto dust grains.


Atoms ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 70
Author(s):  
Florin Lucian Constantin

This article proposes a new method for sensing THz waves that can allow electric field measurements traceable to the International System of Units and to the fundamental physical constants by using the comparison between precision measurements with cold trapped HD+ ions and accurate predictions of molecular ion theory. The approach exploits the lightshifts induced on the two-photon rovibrational transition at 55.9 THz by a THz wave around 1.3 THz, which is off-resonantly coupled to the HD+ fundamental rotational transition. First, the direction and the magnitude of the static magnetic field applied to the ion trap is calibrated using Zeeman spectroscopy of HD+. Then, a set of lightshifts are converted into the amplitudes and the phases of the THz electric field components in an orthogonal laboratory frame by exploiting the sensitivity of the lightshifts to the intensity, the polarization and the detuning of the THz wave to the HD+ energy levels. The THz electric field measurement uncertainties are estimated for quantum projection noise-limited molecular ion frequency measurements with the current accuracy of molecular ion theory. The method has the potential to improve the sensitivity and accuracy of electric field metrology and may be extended to THz magnetic fields and to optical fields.


2020 ◽  
Vol 642 ◽  
pp. A29 ◽  
Author(s):  
R. A. Motiyenko ◽  
A. Belloche ◽  
R. T. Garrod ◽  
L. Margulès ◽  
H. S. P. Müller ◽  
...  

Context. Thioformamide NH2CHS is a sulfur-bearing analog of formamide NH2CHO. The latter was detected in the interstellar medium back in the 1970s. Most of the sulfur-containing molecules detected in the interstellar medium are analogs of corresponding oxygen-containing compounds. Therefore, thioformamide is an interesting candidate for a search in the interstellar medium. Aims. A previous study of the rotational spectrum of thioformamide was limited to frequencies below 70 GHz and to transitions with J ≤ 3. The aim of this study is to provide accurate spectroscopic parameters and rotational transition frequencies for thioformamide to enable astronomical searches for this molecule using radio telescope arrays at millimeter wavelengths. Methods. The rotational spectrum of thioformamide was measured and analyzed in the frequency range 150−660 GHz using the Lille spectrometer. We searched for thioformamide toward the high-mass star-forming region Sagittarius (Sgr) B2(N) using the ReMoCA spectral line survey carried out with the Atacama Large Millimeter/submillimeter Array. Results. Accurate rigid rotor and centrifugal distortion constants were obtained from the analysis of the ground state of parent, 34S, 13C, and 15N singly substituted isotopic species of thioformamide. In addition, for the parent isotopolog, the lowest two excited vibrational states, v12 = 1 and v9 = 1, were analyzed using a model that takes Coriolis coupling into account. Thioformamide was not detected toward the hot cores Sgr B2(N1S) and Sgr B2(N2). The sensitive upper limits indicate that thioformamide is nearly three orders of magnitude at least less abundant than formamide. This is markedly different from methanethiol, which is only about two orders of magnitude less abundant than methanol in both sources. Conclusions. The different behavior shown by methanethiol versus thioformamide may be caused by the preferential formation of the latter (on grains) at late times and low temperatures, when CS abundances are depressed. This reduces the thioformamide-to-formamide ratio, because the HCS radical is not as readily available under these conditions.


2020 ◽  
Vol 498 (4) ◽  
pp. 5960-5971
Author(s):  
Shigeki Inoue ◽  
Naoki Yoshida ◽  
Hidenobu Yajima

ABSTRACT We devise a physical model of formation and distribution of molecular gas clouds (MGCs) in galaxies. We use the model to predict the intensities of rotational transition lines of carbon monoxide (CO) and the molecular hydrogen (H2) abundance. Using the outputs of IllustrisTNG cosmological simulations, we populate MGCs of unresolved sizes in individual simulated galaxies, where the effect of the interstellar radiation field with dust attenuation is also taken into account. We then use the publicly available code despotic (Derive the Energetics and SPectra of Optically Thick Interstellar Clouds) to compute the CO line luminosities and H2 densities without assuming the CO-to-H2 conversion factor (αCO). Our method allows us to study the spatial and kinematic structures traced by CO(1–0) and higher transition lines. We compare the CO luminosities and H2 masses with recent observations of galaxies at low and high redshifts. Our model reproduces well the observed CO–luminosity function and the estimated H2 mass in the local UniverseAbout 10 per cent of molecules in the Universe reside in dwarf galaxies with stellar masses lower than 109 M⊙, but the galaxies are generally ‘CO-dark’ and have typically high αCO. Our model predicts generally lower CO line luminosities than observations at redshifts z ≳ 1–2. We argue that the difference can be explained by the highly turbulent structure suggested for the high-redshift star-forming galaxies.


Sign in / Sign up

Export Citation Format

Share Document