scholarly journals EVN observations of 6.7 GHz methanol maser polarization in massive star-forming regions. V. Completion of the flux-limited sample

Author(s):  
G. Surcis ◽  
W. H. T. Vlemmings ◽  
H.-J. van Langevelde ◽  
B. Hutawarakorn Kramer ◽  
A. Bartkiewicz
2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2013 ◽  
Vol 556 ◽  
pp. A73 ◽  
Author(s):  
G. Surcis ◽  
W. H. T. Vlemmings ◽  
H. J. van Langevelde ◽  
B. Hutawarakorn Kramer ◽  
L. H. Quiroga-Nuñez

2017 ◽  
Vol 13 (S336) ◽  
pp. 225-230
Author(s):  
S. Goedhart ◽  
R. van Rooyen ◽  
D. J. van der Walt ◽  
J. P. Maswanaganye ◽  
G. C. MacCleod ◽  
...  

AbstractThe first periodic Class II methanol maser was reported on in 2003. Since that time, a number of different monitoring programmes have found periodic masers, as well as other modes of variability. In a few cases, periodicity has been found in other maser species such as formaldehyde and water. Several distinct characteristics of light curves have been noted, possibly pointing to different underlying mechanisms for periodicity if one assumes a linear response to incoming radiation. I will give a brief overview of the known periodic sources, discuss current theories, and present new results obtained from monitoring mainline hydroxyl masers using the seven-element Karoo Array Telescope (KAT-7) during its science verification phase.


2007 ◽  
Vol 3 (S242) ◽  
pp. 148-149
Author(s):  
Akihiro Doi ◽  
Kenta Fujisawa ◽  
Mareki Honma ◽  
Koichiro Sugiyama ◽  
Yasuhiro Murata ◽  
...  

AbstractThe Japanese VLBI network (JVN) has begun observations of 6.7-GHz methanol masers associated with massive star-forming regions. The JVN is a newly-established VLBI array with baselines ranging from 50 to 2560 km spread across the Japanese islands. Three observing bands of 6.7, 8.4, and 22 GHz are now available. The array consists of ten antennas: VERA Mizusawa 20 m, VERA Ishigaki 20 m, VERA Iriki 20 m, Usuda 64 m, Yamaguchi 32 m, Tomakomai 11 m, Tsukuba 32 m, Kashima 34 m, VERA Ogasawara 20 m, and Gifu 11 m, the first five of which have 6.7-GHz receiving systems. In summer 2005, we obtained the first fringes at 6.7 GHz, and VLBI images of 12 methanol maser sites including seven that had not previously been imaged with VLBI at this band. In 2006 summer, we obtained phase-reference observations toward several methanol maser sites.


2017 ◽  
Vol 13 (S336) ◽  
pp. 243-246
Author(s):  
Ji-hyun Kang ◽  
Do-Young Byun ◽  
Kee-Tae Kim ◽  
Aran Lyo ◽  
Jongsoo Kim ◽  
...  

AbstractWe present the results of the linear polarisation observations of methanol masers at 44 and 95 GHz towards 39 massive star forming regions (Kanget al.2016). These two lines are observed simultaneously with the 21-m Korean VLBI Network (KVN) telescope in single dish mode. About 60% of the observed showed fractional polarisation of a few percents at least at one of the two transition lines. We note that the linear polarisation of the 44 GHz methanol maser is first detected in this study including single dish and interferometer observations. We find the polarisation properties of these two lines are similar as expected, since they trace similar regions. As a follow-up study, we have carried out the VLBI polarisation observations toward some 44 GHz maser targets using the KVN telescope. We present preliminary VLBI polarisation results of G10.34-0.14, which show consistent polarisation properties in multiple epoch observations.


2002 ◽  
Vol 206 ◽  
pp. 147-150
Author(s):  
Vincent Minier ◽  
Roy Booth ◽  
John Conway ◽  
Michele Pestalozzi

We summarise our recent VLBI observations of a large sample of methanol maser sources associated with high-mass star-forming regions.


2017 ◽  
Vol 13 (S336) ◽  
pp. 317-318
Author(s):  
Nichol Cunningham ◽  
Gary Fuller ◽  
Adam Avison ◽  
Shari Breen

AbstractWe present the initial results from a class I 44-GHz methanol maser follow-up survey, observed with the MOPRA telescope, towards 272 sources from the Methanol Multi-beam survey (MMB). Over half (∼60%) of the 6.7 GHz class II MMB maser sources are associated with a class I 44-GHz methanol maser at a greater than 5σ detection level. We find that class II MMB masers sources with an associated class I methanol maser have stronger peak fluxes compared to regions without an associated class I maser. Furthermore, as part of the MOPRA follow-up observations we simultaneously observed SiO emission which is a known tracer of shocks and outflows in massive star forming regions. The presence of SiO emission, and potentially outflows, is found to be strongly associated with the detection of class I maser emission in these regions.


2007 ◽  
Vol 3 (S242) ◽  
pp. 160-161
Author(s):  
P. Hofner ◽  
E. Jordan ◽  
E. Araya ◽  
S. Kurtz

AbstractWe present the results of recent surveys in the 44GHz methanol maser line toward regions of massive star formation using the Haystack 37m telescope and the VLA. We discuss a possible shock origin of this maser line and present evidence for variability from multi-epoch observations of selected sources.


2019 ◽  
Vol 623 ◽  
pp. A130 ◽  
Author(s):  
G. Surcis ◽  
W. H. T. Vlemmings ◽  
H. J. van Langevelde ◽  
B. Hutawarakorn Kramer ◽  
A. Bartkiewicz

Context. Magnetohydrodynamical simulations show that the magnetic field can drive molecular outflows during the formation of massive protostars. The best probe to observationally measure both the morphology and the strength of this magnetic field at scales of 10–100 au is maser polarization. Aims. We measure the direction of magnetic fields at milliarcsecond resolution around a sample of massive star-forming regions to determine whether there is a relation between the orientation of the magnetic field and of the outflows. In addition, by estimating the magnetic field strength via the Zeeman splitting measurements, the role of magnetic field in the dynamics of the massive star-forming region is investigated. Methods. We selected a flux-limited sample of 31 massive star-forming regions to perform a statistical analysis of the magnetic field properties with respect to the molecular outflows characteristics. We report the linearly and circularly polarized emission of 6.7 GHz CH3OH masers towards seven massive star-forming regions of the total sample with the European VLBI Network. The sources are: G23.44−0.18, G25.83−0.18, G25.71−0.04, G28.31−0.39, G28.83−0.25, G29.96−0.02, and G43.80−0.13. Results. We identified a total of 219 CH3OH maser features, 47 and 2 of which showed linearly and circularly polarized emission, respectively. We measured well-ordered linear polarization vectors around all the massive young stellar objects and Zeeman splitting towards G25.71−0.04 and G28.83−0.25. Thanks to recent theoretical results, we were able to provide lower limits to the magnetic field strength from our Zeeman splitting measurements. Conclusions. We further confirm (based on ∼80% of the total flux-limited sample) that the magnetic field on scales of 10–100 au is preferentially oriented along the outflow axes. The estimated magnetic field strength of |B||| > 61 mG and >21 mG towards G25.71−0.04 and G28.83−0.25, respectively, indicates that it dominates the dynamics of the gas in both regions.


Sign in / Sign up

Export Citation Format

Share Document