maser line
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 648 ◽  
pp. A116
Author(s):  
F. Combes ◽  
N. Gupta ◽  
S. Muller ◽  
S. Balashev ◽  
G. I. G. Józsa ◽  
...  

The Large Survey Project (LSP) “MeerKAT Absorption Line Survey” (MALS) is a blind H I 21 cm and OH 18 cm absorption line survey in the L- and UHF-bands, primarily designed to better determine the occurrence of atomic and molecular gas in the circumgalactic and intergalactic medium, and its redshift evolution. Here we present the first results using the UHF band obtained towards the strongly lensed radio source PKS 1830−211, revealing the detection of absorption produced by the lensing galaxy. With merely 90 min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known H I 21 cm and OH 18 cm main lines at z = 0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, in each 6 km s−1 wide channel). For the first time we report the detection of OH satellite lines at z = 0.89, which until now have not been detected at z > 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720 MHz lines are conjugate. The total OH 1720 MHz emission line luminosity is 6100 L⊙. This is the most luminous known 1720 MHz maser line and is also among the most luminous of the OH main line megamasers. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 years ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model derived from an N-body hydrodynamical simulation, with a morphology similar to its optical HST image. The resulting absorption lines depend mainly on the background continuum and the radial distribution of the gas surface density for each atomic and molecular species. We show that it is possible to reproduce the observations assuming a realistic spiral galaxy disk without invoking any central gas outflows. However, there are distinct and faint high-velocity features in the ALMA millimeter absorption spectra that most likely originate from high-velocity clouds or tidal features. These clouds may contribute to broaden the H I and OH spectra.


2020 ◽  
Vol 642 ◽  
pp. A213
Author(s):  
M. Gómez-Garrido ◽  
V. Bujarrabal ◽  
J. Alcolea ◽  
R. Soria-Ruiz ◽  
P. de Vicente ◽  
...  

Context. Stars on the asymptotic giant branch (AGB) are long-period variables that present strong flux variations at almost all wavelengths, including the SiO maser lines. The periods of these variations are of 300–500 days in Mira-type stars and somewhat shorter in semi-regular variables. The variability of the SiO lines on short timescales has been investigated, but the data are inconclusive. Aims. We aim to study the time evolution of the SiO maser lines in Mira-type and semi-regular variables at short timescales. We also discuss the origin of the observed fast variations. Methods. We observed the SiO maser lines at 7 mm (28SiO v = 1,2 J = 1–0) and 3 mm (28SiO v = 1 J = 2–1) using the 40 m Yebes antenna and the 30 m IRAM telescope, respectively, with a minimum spacing of 1 day. We studied the semi-regular variables RX Boo and RT Vir and the Mira-type variables U Her, R LMi, R Leo, and χ Cyg. We performed a detailed statistical analysis of the variations on different timescales. Results. RX Boo shows strong and fast variations in the intensity of the different spectral features of the SiO lines at 7 and 3 mm. On a timescale of one day, we find variations of ≳10% in 25% of the cases. Variations of greater than ~50% are often found when the observations are separated by 2 or 3 days. A similar variation rate of the SiO lines at 7 mm is found for RT Vir, but the observations of this object are less complete. On the contrary, the variations of the SiO maser line intensity in the Mira-type variables are moderate, with typical variation rates around ≲10% in 7 days. This phenomenon can be explained by the presence of particularly small maser-emitting clumps in semi-regular variables, which would lead to a strong dependence of the intensity on the density variations due to the passage of shocks.


2020 ◽  
Vol 642 ◽  
pp. A145
Author(s):  
M. Szymczak ◽  
P. Wolak ◽  
A. Bartkiewicz ◽  
M. Aramowicz ◽  
M. Durjasz

Context. The excited states of OH masers detected in the environment of high-mass young stellar objects (HMYSOs) are important for improving our understanding of the physical conditions of these objects and also provide information about their magnetic fields. Aims. We aim to search for excited-state OH 6035 MHz maser emission in HMYSOs which might have escaped detection in previous surveys or were never searched for. Methods. A sample of HMYSOs derived from untargeted surveys of the 6668 MHz methanol maser line was observed at 6035 MHz OH transition with the Torun 32 m radio telescope. The 6035 MHz detections were observed in the OH 6031 MHz line. Two-thirds of the detections were observed at least three times over a two-year period. Results. Out of 445 targets, 37 were detected at 6035 MHz, including seven new discoveries. The 6031 MHz line was detected towards ten 6035 MHz sources, one of which was not previously reported. All the newly detected sources are faint with the peak flux density lower than 4 Jy and show significant or high variability on timescales of 4 to 20 months. Zeeman pair candidates identified in three new sources imply a magnetic field intensity of 2–11 mG. Comparison of our spectra with those obtained ~10 yr ago indicates different degrees of variability but there is a general increase in the variability index on an ~25 yr timescale, usually accompanied by significant changes in the profile shape.


2020 ◽  
Vol 638 ◽  
pp. A19
Author(s):  
P. Bergman ◽  
E. M. L. Humphreys

Aims. Here we aim to characterise submillimetre water masers at 437, 439, 471, and 474 GHz towards a sample of evolved stars. Methods. We used the Atacama Pathfinder Experiment (APEX1) to observe submillimetre water transitions and the CO (4–3) line towards 11 evolved stars. The sample included semi-regular and Mira variables, plus a red supergiant star. We performed radiative transfer modelling for the water masers. We also used the CO observations to determine mass loss rates for the stars. Results. From the sample of 11 evolved stars, 7 display one or more of the masers at 437, 439, 471, and 474 GHz. We therefore find that these masers are common in evolved star circumstellar envelopes. The fact that the maser lines are detected near the stellar velocity indicates that they are likely to originate from the inner circumstellar envelopes of our targets. We tentatively link the presence of masers to the degree of variability of the target star, that is, masers are more likely to be present in Mira variables than in semi-regular variables. We suggest that this indicates the importance of strong shocks in creating the necessary conditions for the masers. Typically, the 437 GHz line is the strongest maser line observed among those studied here. We cannot reproduce the above finding in our radiative transfer models. In general, we find that maser emission is very sensitive to dust temperature in the lines studied here. To produce strong maser emission, the dust temperature must be significantly lower than the gas kinetic temperature. In addition to running grids of models in order to determine the optimum physical conditions for strong masers in these lines, we performed smooth wind modelling for which we cannot reproduce the observed line shapes. This also suggests that the masers must originate predominantly from the inner envelopes.


2020 ◽  
Vol 493 (3) ◽  
pp. 4442-4452 ◽  
Author(s):  
M S Darwish ◽  
K A Edris ◽  
A M S Richards ◽  
S Etoka ◽  
M S Saad ◽  
...  

ABSTRACT We investigate the kinematics of high-mass protostellar objects within the high-mass star-forming region IRAS 19410+2336. We performed high angular resolution observations of 6.7-GHz methanol and 22 GHz water masers using the Multi-Element Radio Linked Interferometer Network (MERLIN) and e-MERLIN interferometers. The 6.7-GHz methanol maser emission line was detected within the ∼16–27 km s−1 velocity range with a peak flux density ∼50 Jy. The maser spots are spread over ∼1.3 arcsec on the sky, corresponding to ∼2800 au at a distance of 2.16 kpc. These are the first astrometric measurements at 6.7 GHz in IRAS 19410+2336. The 22-GHz water maser line was imaged in 2005 and 2019 (the latter with good astrometry). Its velocities range from 13 to ∼29 km s−1. The peak flux density was found to be 18.7 and 13.487 Jy in 2005 and 2019, respectively. The distribution of the water maser components is up to 165 mas, ∼350 au at 2.16 kpc. We find that the Eastern methanol masers most probably trace outflows from the region of millimetre source mm1. The water masers to the West lie in a disc (flared or interacting with outflow/infall) around another more evolved millimetre source (13-s). The maser distribution suggests that the disc lies at an angle of 60° or more to the plane of the sky and the observed line-of-sight velocities then suggest an enclosed mass between 44 M⊙ and as little as 11 M⊙ if the disc is edge-on. The Western methanol masers may be infalling.


2019 ◽  
Vol 491 (4) ◽  
pp. 4642-4655
Author(s):  
T P McCarthy ◽  
S P Ellingsen ◽  
S L Breen ◽  
M A Voronkov ◽  
X Chen ◽  
...  

ABSTRACT We have used the Australia Telescope Compact Array (ATCA) to make new observations of the 36.2-GHz (4−1 → 30E) methanol transition towards NGC 4945 and NGC 253. These observations have revealed the presence of new maser components towards these galaxies, and have provided the first clear evidence for variability in extragalactic class I methanol masers. Alongside the new observations of NGC 4945 and NGC 253, we present the results of recent 36.2-GHz methanol maser searches towards 12 galaxies, placing upper limits on the emission from the 36.2-GHz class I transition and the 37.7-GHz (72 → 81E) class II maser line towards these sources. Flux density values for the 7-mm continuum emission towards these sources are also reported where applicable. A re-analysis of the published 36.2-GHz methanol observations of Arp 220 undertaken as part of the search revealed some issues with previous imaging procedures. The re-analysis, combined with non-detections in independent follow-up observations, suggests that there is no 36.2-GHz methanol emission towards Arp 220 stronger than 3.5 mJy in a 10 km s−1 channel (5σ upper limit).


2019 ◽  
Vol 629 ◽  
pp. A136 ◽  
Author(s):  
C. Sánchez Contreras ◽  
A. Báez-Rubio ◽  
J. Alcolea ◽  
A. Castro-Carrizo ◽  
V. Bujarrabal ◽  
...  

We present interferometric observations with the Atacama Large Millimeter Array (ALMA) of the free–free continuum and recombination line emission at 1 and 3 mm of the Red Square Nebula surrounding the B[e]-type star MWC 922. The distance to the source, which is unknown, is usually taken to be d = 1.7–3 kpc. The unprecedented angular resolution (up to ~0.′′02) and exquisite sensitivity of these data reveal for the first time the structure and kinematics of the nascent compact ionized region at its center. We imaged the line emission of H30α and H39α, previously detected with single-dish observations, and of H51ɛ, H55γ, and H63δ, detected for the first time in this work. The line emission is seen over a full velocity range of ~180 km s−1 arising in a region of diameter <0.′′14 (less than a few hundred au) in the maser line H30α, which is the most intense transition reported here. We resolve the spatio-kinematic structure of a nearly edge-on disk rotating around a central mass of ~10 M⊙ (d = 1.7 kpc) or ~18 M⊙ (d = 3 kpc), assuming Keplerian rotation. Our data also reveal a fast (~100 km s−1) bipolar ejection (possibly a jet) orthogonal to the disk. In addition, a slow (<15 km s−1) wind may be emanating from the disk. Both, the slow and the fast winds are found to be rotating in a similar manner to the ionized layers of the disk. This represents the first empirical proof of rotation in a bipolar wind expanding at high velocity (~100 km s−1). The launching radius of the fast wind is found to be <30–51 au (i.e., smaller than the inner rim of the ionized disk probed by our observations). We believe that the fast wind is actively being launched, probably by a disk-mediated mechanism in a (possibly accretion) disk around a possible compact companion. We have modeled our observations using the radiative transfer code MORELI. This enables us to describe with unparalleled detail the physical conditions and kinematics in the inner layers of MWC 922, which has revealed itself as an ideal laboratory for studying the interplay of disk rotation and jet-launching. Although the nature of MWC 922 remains unclear, we believe it could be a ~15 M⊙ post-main sequence star in a mass-exchanging binary system. If this is the case, a more realistic value of the distance may be d ~ 3 kpc.


2019 ◽  
Vol 14 (S353) ◽  
pp. 45-46
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström ◽  
Michael C. Stroh ◽  
Megan O. Lewis ◽  
Mark J Claussen ◽  
...  

AbstractThe Bulge Asymmetries and Dynamical Evolution (BAaDE) survey aims to use circumstellar SiO maser line-of-sight velocities as probes for the Galactic gravitational potential and dynamical structure. The SiO masers are detected at a high rate in specific color-selected MSX infrared sources. Furthermore, the SiO maser properties and line ratios, in combination with infrared spectral energy distributions and location in the Galaxy, will statistically yield detailed information on population and evolution of low- to intermediate-mass evolved stars in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document