scholarly journals Gaia-ESO Survey: Detailed elemental abundances in red giants of the peculiar globular cluster NGC1851

Author(s):  
G. Tautvaisiene ◽  
A. Drazdauskas ◽  
A. Bragaglia ◽  
S. L. Martell ◽  
E. Pancino ◽  
...  
2004 ◽  
Vol 127 (1) ◽  
pp. 373-379 ◽  
Author(s):  
Graina Tautvaiien ◽  
George Wallerstein ◽  
Doug Geisler ◽  
Guillermo Gonzalez ◽  
Corinne Charbonnel

1999 ◽  
Vol 118 (3) ◽  
pp. 1245-1251 ◽  
Author(s):  
Jeffery A. Brown ◽  
George Wallerstein ◽  
Guillermo Gonzalez

1987 ◽  
Vol 120 ◽  
pp. 583-598
Author(s):  
David L. Lambert

A general review is given of the astrophysical information obtainable from observations of molecules in stellar photospheres. Through selected examples, the use of molecules as thermometers (e.g., the OH 3 μm V-R lines in the Sun and α Ori) and as probes of the isotopic (e.g., iMg in metal-poor dwarfs, 12C/13C in cool carbon stars) and elemental abundances (e.g., CNO in red giants) is sketched. All of the (carefully) selected analyses assume that local thermodynamic equilibrium (LTE) prevails.


1978 ◽  
Vol 80 ◽  
pp. 273-276
Author(s):  
Sidney van den Bergh

A quarter of a century ago Keenan and Keller (1953) showed that the majority of high-velocity stars near the Sun outline a Hertzsprung-Russell diagram similar to that of old Population I. This result, which did not appear to fit into Baade's (1944) two-population model of the Galaxy was ignored (except by Roman 1965) for the next two decades. Striking confirmation of the results of Keenan and Keller was, however, obtained by Hartwick and Hesser (1972). Their work appears to show that high-velocity field stars with an ultraviolet excess (which measures Fe/H) of δ(U-B) ≃ +0m.11 lie on a red giant branch that is more than a magnitude fainter than the giant branch of the strong-lined globular cluster 47 Tuc for which δ(U-B) ≃ +0m.10. Furthermore Demarque and McClure (1977) show that the red giants in the old metal poor [δ(U-B) ≃ +0m.11] open cluster NGC 2420 are significantly fainter than are those in 47 Tuc. Calculations by these authors show that the observed differences between the giants in 47 Tuc and in NGC 2420 can be explained if either (1) 47 Tuc is richer in helium than NGC 2420 by ΔY ≃ 0.1 or (2) if 47 Tuc has a ten times lower value of Z(CNO) than does NGC 2420.


1991 ◽  
Vol 381 ◽  
pp. 449 ◽  
Author(s):  
M. B. Davies ◽  
W. Benz ◽  
J. G. Hills

Sign in / Sign up

Export Citation Format

Share Document