CONSTRAINTS ON GLOBULAR CLUSTER FORMATION AND EVOLUTION FROM MAGNESIUM ISOTOPE RATIOS AND R-PROCESS ELEMENTAL ABUNDANCES

Author(s):  
K. OTSUKI ◽  
G. J. MATHEWS ◽  
T. ASHENFELTER
2005 ◽  
Vol 13 ◽  
pp. 347-349
Author(s):  
Stephen E. Zepf

AbstractThis paper addresses the questions of what we have learned about how and when dense star clusters form, and what studies of star clusters have revealed about galaxy formation and evolution. One important observation is that globular clusters are observed to form in galaxy mergers and starbursts in the local universe, which both provides constraints on models of globular cluster formation, and suggests that similar physical conditions existed when most early-type galaxies and their globular clusters formed in the past. A second important observation is that globular cluster systems typically have bimodal color distributions. This was predicted by merger models, and indicates an episodic formation history for elliptical galaxies. A third and very recent result is the discovery of large populations of intermediate age globular clusters in several elliptical galaxies through the use of optical to near-infrared colors. These provide an important link between young cluster systems observed in starbursts and mergers and old cluster systems. This continuum of ages of the metal-rich globular cluster systems also indicates that there is no special age or epoch for the formation of the metal-rich globular clusters, which comprise about half of the cluster population. The paper concludes with a brief discussion of recent results on the globular cluster – low-mass X-ray binary connection.


2009 ◽  
Vol 5 (S265) ◽  
pp. 67-68
Author(s):  
Camilla Juul Hansen ◽  
Francesca Primas

AbstractThe rapid neutron-capture process (r-process), which produces some of the heaviest elements, is not well understood. Obtaining accurate abundances of these heavy elements (Z > 38) is important, both in the context of the chemical evolution of the Galaxy and for understanding the site(s) and process(es) of formation of those elements. We have determined elemental abundances for several r-process elements, notably silver, from high resolution VLT/UVES spectra. Silver was chosen because it is predominantly a light r-process element (38 < Z < 50), and little is known about its formation and evolution in the Galaxy. Here, we present our preliminary results.


1999 ◽  
Vol 118 (3) ◽  
pp. 1245-1251 ◽  
Author(s):  
Jeffery A. Brown ◽  
George Wallerstein ◽  
Guillermo Gonzalez

2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


1996 ◽  
Vol 175 ◽  
pp. 363-366
Author(s):  
Koujun Yamashita

X-ray emissions from clusters are most likely originated from a thin hot plasma in a collisional ionization equilibrium. The optical depth of continuum component is order of 10–3, whereas that of emission lines is around unity. Present emission models used for spectral fitting can not estimate this effect, so that the determination of elemental abundances seems to include large uncertainty. The high resolution spectroscopy with ASCA gives a clue to investigate the physical state of hot intracluster gas and a impact to reconsider the basic atomic processes. This is important issue to deeply understand the structure, formation and evolution of clusters, and the origin of intracluster gas.


2017 ◽  
Vol 362 (10) ◽  
Author(s):  
S. Recchi ◽  
R. Wünsch ◽  
J. Palouš ◽  
F. Dinnbier

2000 ◽  
Vol 174 ◽  
pp. 428-433 ◽  
Author(s):  
S. Gottlöber ◽  
A. Klypin ◽  
A. V. Kravtsov ◽  
V. Turchaninov

AbstractUsing high resolution N-body simulations we study the formation and evolution of clusters and groups in a ΛCDM cosmological model. Groups of galaxies already form before z = 4. Merging of groups and accretion leads to cluster formation at z ≲ 2. Some of the groups merge into large isolated halos.


2004 ◽  
Vol 217 ◽  
pp. 70-76
Author(s):  
Michael D. Gregg ◽  
Michael J. West

Gravitational interactions in rich clusters can strip material from the outer parts of galaxies or even completely disrupt entire systems, giving rise to large scale, low surface brightness ghostly features stretching across intergalactic space. The nearby Coma and Centaurus clusters both have striking examples of galaxy ghosts, in the form of 100 kpc-long plumes of intergalactic debris. By searching HST archival images, we have found numerous other examples of galaxy ghosts in rich clusters at low redshift, evidence that galaxy destruction and recycling are ubiquitous, important in cluster formation and evolution, and continue to mold clusters at the present epoch. Many ghosts appear in X-ray bright clusters, perhaps signaling a connection with energetic subcluster mergers.The fate of such material has important ramifications for cluster evolution. Our new HST WFPC2 V & I images of a portion of the Centaurus plume reveal that it contains an excess of discrete objects with −12 < MV < −6, consistent with being globular clusters or smaller dwarf galaxies. This tidally liberated material is being recycled directly into the intracluster population of stars, dwarf galaxies, globular clusters, and gas, which may have been built largely from a multitude of similar events over the life of the cluster.


Sign in / Sign up

Export Citation Format

Share Document