scholarly journals The host galaxy and optical light curve of the gamma-ray burst GRB 980703

2001 ◽  
Vol 371 (1) ◽  
pp. 52-60 ◽  
Author(s):  
S. Holland ◽  
J. P. U. Fynbo ◽  
J. Hjorth ◽  
J. Gorosabel ◽  
H. Pedersen ◽  
...  
2020 ◽  
Vol 641 ◽  
pp. L10
Author(s):  
Takashi J. Moriya ◽  
Pablo Marchant ◽  
Sergei I. Blinnikov

We show that the luminous supernovae associated with ultra-long gamma-ray bursts can be related to the slow cooling from the explosions of hydrogen-free progenitors that are extended by pulsational pair-instability. We have recently shown that some rapidly-rotating hydrogen-free gamma-ray burst progenitors that experience pulsational pair-instability can keep an extended structure caused by pulsational pair-instability until the core collapse. These types of progenitors have large radii exceeding 10 R⊙ and they sometimes reach beyond 1000 R⊙ at the time of the core collapse. They are, therefore, promising progenitors of ultra-long gamma-ray bursts. Here, we perform light-curve modeling of the explosions of one extended hydrogen-free progenitor with a radius of 1962 R⊙. The progenitor mass is 50 M⊙ and 5 M⊙ exists in the extended envelope. We use the one-dimensional radiation hydrodynamics code STELLA in which the explosions are initiated artificially by setting given explosion energy and 56Ni mass. Thanks to the large progenitor radius, the ejecta experience slow cooling after the shock breakout and they become rapidly evolving (≲10 days), luminous (≳1043 erg s−1) supernovae in the optical even without energy input from the 56Ni nuclear decay when the explosion energy is more than 1052 erg. The 56Ni decay energy input can affect the light curves after the optical light-curve peak and make the light-curve decay slowly when the 56Ni mass is around 1 M⊙. They also have a fast photospheric velocity above 10 000 km s−1 and a hot photospheric temperature above 10 000 K at around the peak luminosity. We find that the rapid rise and luminous peak found in the optical light curve of SN 2011kl, which is associated with the ultra-long gamma-ray burst GRB 111209A, can be explained as the cooling phase of the extended progenitor. The subsequent slow light-curve decline can be related to the 56Ni decay energy input. The ultra-long gamma-ray burst progenitors we proposed recently can explain both the ultra-long gamma-ray burst duration and the accompanying supernova properties. When the gamma-ray burst jet is off-axis or choked, the luminous supernovae could be observed as fast blue optical transients without accompanying gamma-ray bursts.


2013 ◽  
Vol 557 ◽  
pp. A12 ◽  
Author(s):  
E. Zaninoni ◽  
M. G. Bernardini ◽  
R. Margutti ◽  
S. Oates ◽  
G. Chincarini

2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


2000 ◽  
Vol 17 (10) ◽  
pp. 778-780 ◽  
Author(s):  
Huang Yong-Feng ◽  
Dai Zi-Gao ◽  
Lu Tan

2006 ◽  
Vol 369 (4) ◽  
pp. 2059-2064 ◽  
Author(s):  
A. Panaitescu ◽  
P. Mészáros ◽  
D. Burrows ◽  
J. Nousek ◽  
N. Gehrels ◽  
...  
Keyword(s):  

2010 ◽  
Vol 517 ◽  
pp. A61 ◽  
Author(s):  
A. J. Castro-Tirado ◽  
P. Møller ◽  
G. García-Segura ◽  
J. Gorosabel ◽  
E. Pérez ◽  
...  

1998 ◽  
Vol 509 (1) ◽  
pp. L5-L8 ◽  
Author(s):  
S. C. Odewahn ◽  
S. G. Djorgovski ◽  
S. R. Kulkarni ◽  
M. Dickinson ◽  
D. A. Frail ◽  
...  

Author(s):  
Elizabeth R. Stanway ◽  
Malcolm N. Bremer ◽  
Nial R. Tanvir ◽  
Andrew J. Levan ◽  
Luke J. M. Davies

Sign in / Sign up

Export Citation Format

Share Document