scholarly journals Near-infrared spectroscopy of gamma-ray burst host galaxies at : insights into host galaxy dynamics and interpretations of afterglow absorption spectra

2011 ◽  
Vol 419 (4) ◽  
pp. 3039-3047 ◽  
Author(s):  
Hsiao-Wen Chen
2012 ◽  
Vol 8 (S292) ◽  
pp. 190-190
Author(s):  
J. M. Chen ◽  
L. W. Jia ◽  
E. W. Liang

AbstractGRBs are the most luminous events in the Universe. They are detectable from local to high-z universe and may serve as probes for high-z galaxies (e.g., Savaglio et al. 2009; Kewley & Dopita 2002). We compile the observations for 61 GRB host galaxies from literature. Their redshifts range from 0.0085 to 6.295. We present the statistical properties of the GRB host galaxies, including the stellar mass (M*), star-forming rate (SFR), metallicity (Z), extinction (AV), and neutral hydrogen column density (NH). We explore possible correlations among the properties of gamma-ray burst host galaxies and their cosmic evolution with observations of 61 GRB host galaxies. Our results are shown in Figure 1. A clear Z-M* relation is found in our sample, which is Z ~ M0.4. The host galaxies of local GRBs with detection of accompanied supernovae also share the same relation with high-z GRB host galaxies. A trend that a more massive host galaxy tends to have a higher star-formation rate is found. The best linear fit gives a tentative relation, i.e, SFR ~ M0.75. No any correlation is found between AV and NH. A GRB host galaxy at a higher redshift also tends to have a higher SFR. Even in the same redshift, the SFR may vary over three orders of magnitude. The metallicity of the GRB host galaxies is statistically higher than that of the QSO DLAs. The full version of our results please refer to Chen et al. (2012).


2005 ◽  
Vol 52 (4) ◽  
pp. 183-189
Author(s):  
Mizuki Tsuta ◽  
Natsuhiko Marubayashi ◽  
Setsuko Todoriki ◽  
Junichi Sugiyama ◽  
Yasuyuki Sagara

2018 ◽  
Vol 620 ◽  
pp. A37 ◽  
Author(s):  
M. Contini

We present the spectral detailed modelling of NGC 4993 – the host galaxy of GW 170817 – and other short gamma-ray burst (SGRB) host galaxies. In order to determine their physical conditions and the element abundances, we have gathered spectroscopic and photometric data from the literature. The observation data are sometimes missing, preventing us from fully constraining the model. However, for most of the SGRB hosts the [OIII]5007/Hβ and [NII]6548/Hα line ratios are reported. The analysis of NGC 4993 by a composite model (photoionization+shock) confirms that an active galactic nucleus (AGN), most probably a low-ionization nuclear emission-line region (LINER) or a low-luminosity AGN (LLAGN) is the gas photoionization source. Shock velocities and preshock densities are similar to those found in the narrow line region of AGN. O/H and N/H have solar values. For the other SGRB of the sample, we found that O/H ratios are nearly solar, while N/H covers a much larger range of values at redshifts close to 0.4. In NGC 4993, the relative contribution to the spectral energy distribution of an old stellar population, characterized by a black-body temperature of Tbb = 4000 K, with respect to bremsstrahlung is higher by a factor of >100 than in most of the local AGN and starburst (SB) galaxies. For the other SGRB that compose the sample, Tbb ranges between 2000 K for SGRB 100206A and 8000 K for SGRB 111117A.


2017 ◽  
Vol 10 (03) ◽  
pp. 1650053 ◽  
Author(s):  
Kaewkarn Phuangsombut ◽  
Nattaporn Suttiwijitpukdee ◽  
Anupun Terdwongworakul

Near-infrared spectroscopy (NIRS) in the range 900–1700 nm was performed to develop a classifying model for dead seeds of mung bean using single kernel measurements. The use of the combination of transmission-absorption spectra and reflection-absorption spectra was determined to yield a better classification performance (87.88%) than the use of only transmission-absorption spectra (81.31%). The effect of the orientation of the mung bean with respect to the light source on its absorbance was investigated. The results showed that hilum-down orientation exhibited the highest absorbance compared to the hilum-up and hilum-parallel-to-ground orientations. We subsequently examined the spectral information related to the seed orientation by developing a classifying model for seed orientation. The wavelengths associated with classification based on seed orientation were obtained. Finally, we determined that the re-developed classifying model excluding the wavelengths related to the seed orientation afforded better accuracy (89.39%) than that using the entire wavelength range (87.88%).


2008 ◽  
Vol 39 (01) ◽  
Author(s):  
AJ Fallgatter ◽  
AC Ehlis ◽  
MM Richter ◽  
M Schecklmann ◽  
MM Plichta

Sign in / Sign up

Export Citation Format

Share Document